Organic Letters
Letter
(d) Leow, D.; Lin, S.; Chittimalla, S. K.; Fu, X.; Tran, C.-H. Angew.
Chem. 2008, 120, 5723−5727; Angew. Chem., Int. Ed. 2008, 47, 5641−
5645. (e) Terada, M.; Nakano, M.; Ube, H. J. Am. Chem. Soc. 2006, 128,
16044−16045. (f) Kita, T.; Georgieva, A.; Hashimoto, A. Y.; Nakata, T.;
Nagasawa, K. Angew. Chem. 2002, 114, 2956−2958; Angew. Chem., Int.
Ed. 2002, 41, 2832−2834. (f) Corey, E. J.; Grogan, M. J. Org. Lett. 1999,
1, 157−160. For reviews, see: (g) Leow, D.; Tan, C.-T. Chem.Asian J.
2009, 4, 488−507. (h) Ishikawa, T.; Kumamoto, T. Synthesis 2006,
737−752.
An initial evaluation of the biological activities of these
intriguing scaffolds identified several members to be inhibitory
toward the growth of an attenuated strain of Mycobacterium
tuberculosis H37Ra. For example, compound 6d inhibited growth
with an IC50 = 7.7 μM and showed only moderate cytotoxicity
against human CEM-TART T-cells16 (IC50 = 53.0 μM).17 The
syn-diastereomer of compound syn-4d was also active with an
IC50 = 8.6 μM but was slightly more cytotoxic toward T-cells
(IC50 = 32.1 μM). Interestingly, the diastereomeric compound,
anti-4d, showed no activity suggesting a specific molecular
interaction might be responsible for its activity. Compound 4d
was active against a broader range of organisms including Gram-
negative bacteria (Escherichia coli; MIC100 = 25.0 μM and
Acinetobacter baumanii; MIC100 = 12.5 μM) as well as the Gram-
positive bacterium Bacillus subtilus (MIC100 = 6.25 μM) and
opportunistic fungi Candida albicans (MIC100 = 12.5 μM).
Current studies are aimed at penetrating the mechanism of
action of these new bicyclic guanidines antimicrobial agents.
In summary, we have developed a method for the synthesis of
highly substituted bicyclic guanidines in good to excellent yields
from readily accessible propargylguanidines. This cascade
hydroamination−Michael addition sequence gives rise to
products as a single regioisomer and with a constitutionally
and geometrically stable ene−guanidine functional group.
Substituent variations can deliver products with high diaster-
eoselectivity despite the newly formed stereocenter being five
atoms removed and spanned by an almost planar heterocyclic
core. These interesting scaffolds have already garnered our
interest as antitubercular agents. The modularity of this approach
should expedite follow-up investigations to identify candidates
with increased potency and selectivity against M. tuberculosis.
(3) For recent reviews, see: (a) Coles, M. P. Chem. Commun. 2009,
3659−3676. (b) Coles, M. P. Dalton Trans. 2006, 985−1001.
(4) (a) Mulcahy, J. V.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 12630−
12631. (b) Fleming, J. J.; McReynolds, M. D.; Du Bois, J. J. Am. Chem.
Soc. 2007, 129, 9964−9975. (c) Evans, P. A.; Qin, J.; Robinson, J. E.;
Bazin, B. Angew. Chem. 2007, 119, 7561−7563; Angew. Chem., Int. Ed.
2007, 46, 7417−7419. (d) Arnold, M. A.; Day, K. A.; Duron, S. G.; Gin,
D. Y. J. Am. Chem. Soc. 2006, 128, 13255−13260. (e) Cohen, F.;
Overman, L. E. J. Am. Chem. Soc. 2001, 123, 10782−10783. (f) Overman,
L. E.; Rabinowitz, M. H. J. Org. Chem. 1993, 58, 3235−3237.
(5) (a) Gainer, M. J.; Bennett, N. R.; Takahashi, Y.; Looper, R. E.
Angew. Chem. 2011, 123, 710−713; Angew. Chem., Int. Ed. 2011, 50,
684−687. (b) Wang, Y.; Shen, H.; Xie, Z. Synlett 2011, 969−973.
(c) Ermolatev, D. S.; Bariwal, J. B.; Steenackers, H. P. L.; De
Keersmaecker, S. C. J.; Van der Eycken, E. V. Angew. Chem. 2010,
122, 9655−9658; Angew. Chem., Int. Ed. 2010, 49, 9465−9468.
(d) Giles, R. L.; Sullivan, J. D.; Steiner, A. M.; Looper, R. E. Angew.
Chem. 2009, 121, 3162−3166; Angew. Chem., Int. Ed. 2009, 48, 2116−
3120. (e) Oyler, A. R.; Naldi, R. E.; Stefanick, S. M.; Lloyd, J. R.; Graden,
D. A.; Cotter, M. L. J. Pharm. Sci. 1989, 78, 21−24.
(6) (a) Hovelmann, C. H.; Streuff, J.; Brelot, L.; Muniz, K. Chem.
̈
̃
Commun. 2008, 2334−2336. (b) Muniz, K.; Streuff, J.; Hovelmann, C.
̃
̈
H.; Munez, A. Angew. Chem. 2007, 119, 7255−7258; Angew. Chem., Int.
Ed. 2007, 46, 7125−7127.
́
̃
(7) (a) Zhao, B.; Du, H.; Shi, Y. Org. Lett. 2008, 10, 1087−1090.
(b) Butler, D. C. D.; Inman, G. A.; Alper, H. J. Org. Chem. 2000, 65,
5887−5890. (c) Baeg, J.-O.; Bensimon, C.; Alper, H. J. Am. Chem. Soc.
1995, 117, 4700−4701.
ASSOCIATED CONTENT
* Supporting Information
■
S
(8) (a) Tanaka, S.; Iwatsuki, M.; Omura, S. Org. Lett. 2006, 8, 5577−
5800. (b) Vvedensky, V. Y.; Rogovoy, B. V.; Kiselyov, A. S.;
Ivachtchenko, A. V. Tetrahedron Lett. 2005, 46, 8699−8703.
Experimental procedures and full spectroscopic data for all new
compounds. This material is available free of charge via the
(c) Buchi, G.; Rodriguez, A. D.; Yakushijin, K. J. Org. Chem. 1989, 54,
̈
4494−4496.
(9) Larraufie, M.-H.; Ollivier, C.; Fensterbank, L.; Malacria, M.;
AUTHOR INFORMATION
Corresponding Author
■
̂
Lacote, E. Angew. Chem. 2010, 122, 2224−2227; Angew. Chem., Int. Ed.
2010, 49, 2178−2181.
(10) (a) Heinelt, U.; Schultheis, D.; Jager, S.; Lindenmaier, M.; Pollex,
̈
Notes
A.; Beckmann, H. S. G. Tetrahedron 2004, 60, 9883−9888. (b) Yu, Y.;
Ostresh, J. M.; Houghten, R. A. J. Org. Chem. 2002, 67, 3138−3141.
(c) Isobe, T.; Fukuda, K.; Tokunaga, T.; Seki, H.; Yamaguchi, K.;
Ishikawa, T. J. Org. Chem. 2000, 65, 7774−7778. (d) Cheng, X.-H.; Liu,
F.-C. Synth. Commun. 1993, 23, 3191−3194. (e) Baltzer, C. M.;
McCarty, C. G. J. Org. Chem. 1973, 38, 155−156. (f) Rodricks, J. V.;
Rapoport, H. J. Org. Chem. 1971, 36, 46−48.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
R.E.L. thanks the NIH, General Medical Sciences (R01
GM090082, P41 GM08915), Curza, Amgen, and Eli Lilly for
financial support. L.R.B. thanks the ICBG (5UO1TW006671)
for funding.. We are grateful to Prof. Matt S. Sigman and Prof.
Jon D. Rainier for insightful discussions.
■
(11) Shen, H.; Wang, Y.; Xie, Z. Org. Lett. 2011, 13, 4562−4565.
(12) Berlinck, R. G. S.; Kossuga, M. H.; Nascimento, A. M. Science of
Synthesis; Knight, J. G., Ed.; Thieme: Stuttgart, 2005; Vol. 18, pp 1077−
1116.
̅
(13) For a recent review, see: Katritzky, A. R.; Rogovoy, B. V.
ARKIVOC 2005, 49−87.
REFERENCES
■
(14) Looper, R. E.; Haussener, T. J.; Mark, J. B. C. J. Org. Chem. 2011,
76, 6967−6971.
(1) For recent reviews, see: (a) Sullivan, J. D.; Giles, R. L.; Looper, R. E.
Curr. Bioact. Compd. 2009, 5, 39−78. (b) Berlinck, R. G. S.; Burtoloso, A.
C. B.; Kossuga, M. H. Nat. Prod. Rep. 2008, 25, 919−954. (c) Blondeau,
(15) Xiao, Y.-P.; Liu, X.-Y.; Che, C.-M. Beilstein J. Org. Chem. 2011, 7,
1100−1107.
́ ́
P.; Segura, M.; de Mendoza, J.; Perez-Fernandez, R. Chem. Soc. Rev.
(16) Chen, H.; Boyle, J. T.; Malim, M. H.; Cullen, B. R.; Lyerly, H. K.
Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 7678−7682.
2007, 36, 198−210. (d) Schug, K. A.; Lindner, W. Chem. Rev. 2005, 105,
67−114.
(17) See Supporting Information for Dose repsonse curves of Mtb to
compounds 6d and syn-4d.
(2) Selected references: (a) Ma, T.; Fu, X.; Kee, C. W.; Zong, L.; Pan,
Y.; Huang, K.-W.; Tan, C.-H. J. Am, Chem. Soc. 2011, 133, 2828−2831.
(b) Leow, D.; Tan, C.-H. Synlett 2010, 1589−1605. (c) Misaki, T.;
Takimoto, G.; Sugimura, T. J. Am. Chem. Soc. 2010, 132, 6286−6287.
6051
dx.doi.org/10.1021/ol502691w | Org. Lett. 2014, 16, 6048−6051