H. G. F. Richter et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1134–1140
1139
Table 3
Pharmacokinetic parameters of compound 7g after intravenous and oral administration in male C57BL/6 mice and male Wistar ratsa
Species
Dose (mg/kg)
Cl ((mL/min)/kg)
10.0
Cmax/dose (ng/mL)
Vss (L/kg)
AUC/dose (ng ⁄ h/mL)
543.3
t1/2 (h)
F (%)
Male C57BL/6 mouseb
4 (iv)
10 (po)
2 (iv)
205.4
1.24
1.61
33%
59%
Male Wistar ratc
16.3
269.6
0.62
606.5
1.16
5 (po)
a
7.5% gelatin in 0.62% aqueous NaCl and 30% N-methylpyrrolidinone in aqueous100 mM TRIS buffer pH 8.5 were used as vehicles for oral and intravenous administration,
respectively.
b
n = 2 per time point.
n = 3 per time point.
c
cross-reactivity was observed with these receptors up to a concen-
tration of 10 M (data not shown).
drug design allowed us to address the key liabilities of the previous
lead compound 1 through the identification of an exit vector which
permitted the introduction of polar residues. Several compounds
l
The pharmacokinetic parameters of 7g were determined in
mice and rats and the data are summarized in Table 3. After oral
dosing in mice the compound was characterized by a low clearance
(Cl) of 10 mL/min/kg, moderate half-life (t1/2) of 1.6 h, volume of
distribution (Vss) of 1.24 L/kg and moderate oral bioavailability
(F) of 33% which resulted in an overall good exposure (AUC) of
5433 ng ⁄ h/mL. In rats, 7g had a slightly higher clearance of
16 mL/min/kg, a moderate half-life of 1.2 h, low volume of distri-
bution of 0.62 L/kg and a good bioavailability of 59%, leading to a
good exposure of 3033 ng ⁄ h/mL.
with
a negatively charged functionality displayed excellent
physicochemical, ADME and in vitro safety properties culminating
in the discovery of 4-{(S)-2-[2-(4-chloro-phenyl)-5,6-difluoro-
benzoimidazol-1-yl]-2-cyclohexyl-acetylamino}-3-fluoro-benzoic
acid (7g) with favorable rodent pharmacokinetic properties and
potent plasma lipid lowering effects in LDLRÀ/À mice after oral
administration.
Acknowledgement
Based on the high in vitro potency of 7g for human FXR (Table
1) and murine FXR (IC50 0.29 lM, EC50 0.87 lM (38%)), selectivity
The work of Martin Ritter and Kersten Klar is gratefully
acknowledged.
and favorable pharmacokinetic properties we evaluated its effects
on plasma lipid profiles in high-fat diet fed LDL receptor deficient
(LDLRÀ/À) mice.25 LDLRÀ/À mice are reported to respond to FXR
treatment with decreases in plasma cholesterol and triglycerides
as a consequence of reduced intestinal absorption and decreased
synthesis.26 After five days of treatment (10 mg/kg po, QD), 7g
caused a statistically significant decrease in plasma total choles-
terol (TC, À41%), low density lipoprotein cholesterol (LDL-C,
À33%) and triglycerides (TG, À59%). These reductions were compa-
rable to the effects seen with the reference compound (ethyl ester
analogue of FXR-450, Scheme 1) dosed at 30 mg/kg/d (Fig. 5). PK
monitoring of 7g revealed a plasma exposure of 885 ng/mL
References and notes
1. (a) Forman, B. M. et al Cell 1995, 81, 687; (b) Seol, W.; Choi, H.-S.; Moore, D. D.
Mol. Endocrinol. 1995, 9, 72.
2. (a) Makishima, M.; Okamoto, A. Y.; Repa, J. J.; Tu, H.; Learned, R. M.; Luk, A.;
Hull, M. V.; Lustig, K. D.; Mangelsdorf, D. J.; Shanz, B. Science 1999, 284, 1362;
(b) Parks, D. J. et al Science 1999, 284, 1365; (c) Wang, H.; Chen, J.; Hollister, K.;
Sowers, L. C.; Forman, B. M. Mol. Cell 1999, 3, 543.
3. Zhang, Y.; Kast-Woelbern, H. R.; Edwards, P. A. J. Biol. Chem. 2003, 278, 104.
4. Lee, F. Y.; Lee, H.; Hubbert, M. L.; Edwards, P. A.; Zhang, Y. Trends Biochem. Sci.
2006, 31, 572.
5. Zhang, Y.; Edwards, P. A. FEBS Lett. 2008, 582, 10.
(1.63
pharmacokinetic properties of 7g versus 1 (plasma exposure after
2 h of 0.95
M at a dose of 30 mg/kg).18
In summary, we developed a novel class of potent and selective
non-steroidal FXR agonists based on a benzimidazole acetamide
scaffold. Our lead optimization efforts guided by structure-based
l
M) after 2 h. This result further confirmed the improved
6. (a) Zhang, Y.; Lee, F. Y.; Barrera, G.; Lee, H.; Vales, C.; Gonzalez, F. J.; Willson, T.
M.; Edwards, P. A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1006; (b) van Dijk, T. H.;
Grefhorst, A., et al J. Biol. Chem. 2006, 281, 11039; (c) Ma, K.; Saha, P. K.; Chan,
L.; Moore, D. D. J. Clin. Invest. 2006, 116, 1102.
7. (a) Stedman, C.; Liddle, C.; Coulter, S.; Sonoda, J.; Alvarez, J. G.; Evans, R. M.;
Downes, M. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11323; (b) Jones, S. A. et al J.
Clin. Invest. 2003, 112, 1678; (c) Fiorucci, S. et al J. Pharmacol. Exp. Ther. 2005,
313, 604.
l
8. (a) Doggrell, S. A. Curr. Opin. Invest. Drugs 2006, 7, 344; (b) Moschetta, A.;
Bookout, A. L.; Mangelsdorf, D. J. Nat. Med. 2004, 10, 1235.
9. (a) Cariou, B. Diabetes Metab. 2008, 34, 685; (b) Kong, B.; Luyendyk, J. P.; Tawfik,
O.; Guo, G. L. J. Pharmacol. Exp. Ther. 2009, 328, 116.
10. Levi, M. et al Diabetes 2007, 56, 2485.
11. Maloney, P. R. et al J. Med. Chem. 2000, 43, 2971.
12. Evans, R. M. et al Mol. Cell 2003, 11, 1079.
13. Navas, F., III et al Bioorg. Med. Chem. Lett. 2009, 19, 4733.
14. Flatt, B. et al J. Med. Chem. 2009, 52, 904.
140
120
100
15. Lundquist, J. T., IV; Harnish, D. C., et al J. Med. Chem. 2010, 53, 1774.
16. Pellicciari, R.; Fiorucci, S.; Camaioni, E.; Clerici, C.; Costantino, G.; Maloney, P.
R.; Morelli, A.; Parks, D. J.; Willson, T. M. J. Med. Chem. 2002, 45, 3569.
18. Bleicher, K. H. et al Bioorg. Med. Chem. Lett. 2011, 21, 191.
19. Mi, L.-Z.; Devarakonda, S.; Harp, J. M.; Han, Q.; Pellicciari, R.; Willson, T. M.;
Khorasanizadeh, S.; Rastinejad, F. Mol. Cell 2003, 11, 1093.
20. Crystallographic data for structures 7d and 7g have been deposited at the
Cambridge Crystallographic Data Centre under the deposition numbers CCDC
804960 (7d) and 804961 (7g), respectively. Copies of these data can be
Union Road, Cambridge CB21EZ, UK; fax: +44 1223 336 033; or
deposit@ccdc.cam.ac.uk).
**
80
60
40
20
0
**
**
**
**
**
**
Total cholesterol
LDL-C
Triglycerides
7g (10 mg/kg)
Control
Reference (30 mg/kg)
Figure 5. Effect of 7g versus reference compound on plasma total cholesterol,
LDL-C and triglycerides in LDLRÀ/À mice fed a high-fat diet for 15 days after 5 days
oral treatment: (⁄⁄) P <0.01 versus vehicle control, one way ANOVA followed by
Dunnett‘s post hoc test.
21. Schwenk, E.; Papa, D. J. Am. Chem. Soc. 1948, 70, 3626.
22. (a) Nichols, J. S.; Parks, D. J.; Consler, T. G.; Blanchard, S. G. Anal. Biochem. 1998,
257, 112; (b) Nichols, J. S.; Parks, D. J.; Consler, T. G.; Blanchard, S. G. Anal.
Biochem. 1998, 263, 126 (corrigendum).