Journal of the American Chemical Society
Page 4 of 6
1
2
3
4
5
6
7
8
E.; Zeng, Y.; Besser, H. A.; Jacobsenꢁ, E. N. Concerted Nucleophilic Aro-
matic Substitutions. Nat. Chem. 2018, 10, 917−923.
In conclusion, a Ru-catalyzed SNAr amination of aryl fluorides
as the limiting reagents by utilizing a hemilabile, bidentate ligand
has been developed. The mild reaction conditions, as well as broad
substrate scope, make this protocol attractive for synthesis and
functionalization of bioactive compounds. Preliminary mechanistic
studies reveal that the substitution proceeds via η6-coordination,
and the weakly coordinating group on the hemilabile ligand pro-
motes the arene exchange step. Further studies into the mechanism,
and the extension to related transformations are currently ongoing.
(4) For selected reviews, see: (a) Pike, R. D.; Sweigart, D. A. Electro-
philic Reactivity of Coordinated Cyclic π-Hydrocarbons. Coordination
Chemistry Reviews 1999, 187, 183-222. (b) Pape, A. R.; Kaliappan, K. P.;
Kündig, E. P. Transition-Metal-Mediated Dearomatization Reactions.
Chem. Rev. 2000, 100, 2917−2940. (c) Pigge, F. C.; Coniglio, J. J. Stoichi-
ometric Applications of η6-Arene Ruthenium(II) Complexes in Organic
Chemistry. Current Organic Chemistry 2001, 5, 757−784. (d) Semmelhack,
M. F.; Chlenov, A. (Arene)Cr(CO)3 Complexes: Aromatic Nucleophilic
Substitution. Top. Organomet. Chem. 2004, 7, 43. For selected, recent ex-
amples, see: (e) Kamikawa, K.; Kinoshita, S.; Furusyo, M.; Takemoto, S.;
Matsuzaka, H.; Uemura, M. Stereoselective Synthesis of Both Enantiomers
of N-Aryl Indoles with Axially Chiral N-C Bonds. J. Org. Chem. 2007, 72,
3394−3402. (f) Braun, W.; Calmuschi-Cula, B.; Englert, U.; Höfener, K.;
Alberico, E.; Salzer, A. Novel Chiral 1,3-Diamines by a Highly Modular
Umpolung Strategy Employing a Diastereoselective Fluorination–Nucleo-
philic Aromatic Substitution Sequence. Eur. J. Org. Chem. 2008, 2065–
2074. (g) McGrew, G. I.; Temaismithi, J.; Carroll, P. J.; Walsh, P. J. Syn-
thesis of Polyarylated Methanes through Cross-Coupling of Tricarbon-
ylchromium-Activated Benzyllithiums. Angew. Chem. Int. Ed. 2010, 49,
5541–5544. (h) McGrew, G. I.; Stanciu, C.; Zhang, J.; Carroll, P. J.; Dreher,
S. D.; Walsh, P. J. Asymmetric Cross-Coupling of Aryl Triflates to the Ben-
zylic Position of Benzylamines. Angew. Chem. Int. Ed. 2012, 51, 11510–
11513. (i) Miller, A. J. M.; Kaminsky, W.; Goldberg, K. I. Arene Activation
at Iridium Facilitates C−O Bond Cleavage of Aryl Ethers. Organometallics
2014, 33, 1245−1252. (j) Shirakawa, S.; Yamamoto, K.; Maruoka, K.
Phase-Transfer-Catalyzed Asymmetric SNAr Reaction of -Amino Acid
Derivatives with Arene Chromium Complexes. Angew. Chem. Int. Ed. 2015,
54, 838–840 (k) D’Amato, E. M.; Neumann, C. N.; Ritter, T. Selective Ar-
omatic C−H Hydroxylation Enabled by η6-Coordination to Iridium(III). Or-
ganometallics 2015, 34, 4626−4631. (l) Mao, J.; Zhang, J.; Jiang, H.; Bel-
lomo, A.; Zhang, M.; Gao, Z.; Dreher, S. D.; Walsh, P. J. Palladium-Cata-
lyzed Asymmetric Allylic Alkylations with Toluene Derivatives as Pronu-
cleophiles. Angew. Chem. Int. Ed. 2016, 55, 2526–2530. (m) Beyzavi, M.
H.; Mandal, D.; Strebl, M. G.; Neumann, C. N.; D’Amato, E. M.; Chen, J.;
Hooker, J. M.; Ritter, T. 18F-Deoxyfluorination of Phenols via Ru π-Com-
plexes. ACS Cent. Sci. 2017, 3, 944−948. (n) Pike, J. A.; Walton, J. W. Nu-
cleophilic Trifluoromethylation of Electrondeficient Arenes. Chem. Com-
mun. 2017, 53, 9858−9861.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website.
Experimental procedures, characterization of new compounds and
spectroscopic data (PDF)
AUTHOR INFORMATION
Corresponding Author
*shihang@westlake.edu.cn
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This project was supported by Foundation of Westlake University,
and China Postdoctoral Science Foundation (2019M662118). We
thank Instrumentation and Service Center for Physical Sciences at
Westlake University for the assistance work in measurement/data
interpretation.
REFERENCES
(1) Brown, D. G.; Bostrꢀm, J. Analysis of Past and Present Synthetic
Methodologies on Medicinal Chemistry: Where Have All the New Reac-
tions Gone? J. Med. Chem. 2016, 59, 4443−4458.
(5) For catalytic SNAr reactions via η6-coordination, see: (a) Wil-
kinson, L. A.; Walton, J. W. π-Coordinated Arene Metal Complexes and
Catalysis, Organomet. Chem. 2019, 42, 125. (b) Takemoto, S.; Matsuzaka,
H. Recent Topics on Catalytic Transformations of Aromatic Molecules via
η6-Arene Transition Metal Complexes. Tetrahedron Letters 2018, 59, 697–
703. (c) Houghton, R. P.; Voyle, M.; Price, R. Reactions of Coordinated
Ligands. Part 10. Rhodium-catalysed Cyclisation of 3-(2-Fluoro-
phenyl)propanoIs to Chromans. J. Chem. Soc., Perkin Trans. I 1984, 925.
(d) Otsuka, M.; Endo, K.; Shibata, T. Catalytic SNAr Reaction of Non-acti-
vated Fluoroarenes with Amines via Ru η6-Arene Complexes. Chem. Com-
mun., 2010, 46, 336–338. (e) Otsuka, M.; Yokoyama, H.; Endo, K.; Shibata,
T. Facile Catalytic SNAr Reaction of Nonactivated Fluoroarenes with
Amines Using η6-Benzene Ruthenium(II) Complex. Synlett 2010, 17,
2601–2606. (f) Konovalov, A. I.; Gorbacheva, E. O.; Miloserdov, F. M.;
Grushin, V. V. Ruthenium-Catalyzed Nucleophilic Fluorination of Halo-
benzenes. Chem. Commun., 2015, 51, 13527–13530. (g) Walton, J. W.;
Williams, J. M. J. Catalytic SNAr of Unactivated Aryl Chlorides. Chem.
Commun., 2015, 51, 2786−2789. For other catalytic reactions via η6-co-
ordination, see: (h) Takaya J.; Hartwig, J. F. Mechanistic Studies of Ru-
thenium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes: In-
termediates and Evidence for Catalysis through π-Arene Complexes. J. Am.
Chem. Soc., 2005, 127, 5756. (i) Takemoto, S.; Shibata, E.; Nakajima, M.;
Yumoto, Y.; Shimamoto, M.; Matsuzaka, H. Ruthenium-Sulfonamide-Cat-
alyzed Direct Dehydrative Condensation of Benzylic C−H Bonds with Ar-
omatic Aldehydes. J. Am. Chem. Soc. 2016, 138, 14836−14839. (j) Saper,
N. I.; Hartwig, J. F. Mechanistic Investigations of the Hydrogenolysis of
Diaryl Ethers Catalyzed by Nickel Complexes of N–Heterocyclic Carbene
Ligands. J. Am. Chem. Soc. 2017, 139, 17667−17676.
(2) For selected reviews of classical stepwise SNAr reaction, see: (a)
Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Part A: Struc-
ture and Mechanisms, 4th ed., Springer, New York, 2000, 589–593. (b)
Terrier, F. Modern Nucleophilic Aromatic Substitution. WileyVCH, Wein-
heim, 2013, e-book ISBN: 9783527656141. For selected examples of
other stepwise SNAr reaction, see: (c) Diness, F.; Fairlie, David P. Cata-
lyst-Free N-Arylation Using Unactivated Fluorobenzenes. Angew. Chem.
Int. Ed. 2012, 51, 8012–8016. (d) Tay, N. E. S.; Nicewicz, D. A. Cation
Radical Accelerated Nucleophilic Aromatic Substitution via Organic Pho-
toredox Catalysis. J. Am. Chem. Soc. 2017, 139, 16100–16104. (e) Huang,
H.; Lambert, T. H. Electrophotocatalytic SNAr Reactions of Unactivated
Aryl Fluorides at Ambient Temperature and Without Base. Angew. Chem.
Int. Ed. 2019, 58, 1–6.
(3) For selected reviews, see: (a) Neumann, C. N.; Ritter, T. Facile C−F
Bond Formation through a Concerted Nucleophilic Aromatic Substitution
Mediated by the PhenoFluor Reagent. Acc. Chem. Res. 2017, 50,
2822−2833. (b) Rohrbach, S.; Smith, A. J.; Pang, J. H.; Poole, D. L.; Tuttle,
T.; Chiba, S.; Murphy, J. A. Concerted Nucleophilic Aromatic Substitution
Reactions. Angew. Chem. Int. Ed. 2019, 58, 16368–16388. For selected
examples, see: (c) Neumann, C. N.; Hooker, J. M.; Ritter, T. Concerted
Nucleophilic Aromatic Substitution with 19F− and 18F−. Nature 2016, 534,
369−373. (d) Schimler, S. D.; Cismesia, M. A.; Hanley, P. S.; Froese, R. D.
J.; Jansma, M. J.; Bland, D. C.; Sanford, M. S. Nucleophilic Deoxyfluori-
nation of Phenols via Aryl Fluorosulfonate Intermediates. J. Am. Chem. Soc.
2017, 139, 1452−1455. (e) Ong, D. Y.; Tejo, C.; Xu, K.; Hirao, H.; Chiba,
S. Hydrodehalogenation of Haloarenes by a Sodium Hydride–Iodide Com-
posite. Angew. Chem. Int. Ed. 2017, 56, 1840–1844. (f) Kaga, A.; Hayashi,
H.; Hakamata, H.; Oi, M.; Uchiyama, M.; Takita, R.; Chiba, S. Nucleophilic
Amination of Methoxy Arenes Promoted by a Sodium Hydride/Iodide
Composite. Angew. Chem. Int. Ed. 2017, 56, 11807 –11811. (g) Kwanꢁ, E.
(6) (a) Traylor, T. G.; Stewart, K. J.; Goldberg, M. J. Arene Exchange
Reactions of (Arene)tricarbonylchromium Complexes. J. Am. Chem. Soc.
1984, 106, 4445−4454. (b) Traylor, T. G.; Stewart, K. J.; Goldberg, M. J.
Thermal Carbon Monoxide Exchange Reactions of (Arene)tricarbonylchro-
mium Complexes. Organometallics 1986, 5, 2062−2067.
ACS Paragon Plus Environment