T. Oishi et al. / Polyhedron 33 (2012) 209–217
217
(h) H. Nakamura, Y. Sunatsuki, M. Kojima, N. Matsumoto, Inorg. Chem. 46
(2007) 8170;
(i) Y. Ikuta, M. Ooidemizu, Y. Yamahata, M. Yamada, S. Osa, N. Matsumoto, S.
Iijima, Y. Sunatsuki, M. Kojima, F. Dahan, J.-P. Tuchagues, Inorg. Chem. 42
(2003) 7001;
(k) Y. Sunatsuki, H. Ohta, M. Kojima, Y. Ikuta, Y. Goto, N. Matsumoto, S. Iijima,
H. Akashi, S. Kaizaki, F. Dahan, J.P. Tuchagues, Inorg. Chem. 43 (2004) 4154;
(l) H. Hagiwara, K. Nishi, N. Matsumoto, Y. Sunatsuki, M. Kojima, S. Iijima, Bull.
Chem. Soc. Jpn. 84 (2011) 306;
(m) S. Takahashi, S. Hashimoto, Y. Shimogori, N. Matsumoto, T. Nakashima, M.
Tsuchimoto, Polyhedron 30 (2011) 2026;
(n) C.T. Brewer, G. Brewer, M. Shang, W.R. Scheidt, I. Muller, Inorg. Chim. Acta
278 (1998) 197;
(o) N. Ohata, H. Masuda, O. Yamauchi, Angew. Chem., Int. Ed. Engl. 35 (1996)
531;
(p) J. Breu, H. Domel, A. Stoll, Eur. J. Inorg. Chem. (2000) 2401;
(q) R. Krämer, J.M. Lehn, A. De Cian, J. Fischer, Angew. Chem., Int. Ed. Engl. 32
(1993) 703.
also influenced by the element of the chirality. Interestingly the
CuII complex can function as a self-complementary building block
both in the protonated form and the deprotonated form. In the pro-
II
tonated form, the CuII complex [Cu XHL ] showed two kinds of
DL
enantioselective assembly process to give (1) homochiral 1D
assembly structure constructed by intermolecular imidazoleꢀꢀꢀ
carboxylate hydrogen bond and (2) homochiral 1D structure gen-
erated by intermolecular coordination bond between a carboxylate
oxygen of a molecule and a CuII ion of adjacent molecule. The
II
DL
deprotonation of [Cu ClHL ] at the imidazole moiety gave an imi-
DL
dazolato-bridged cyclic tetranuclear structure [CuL (H2O)]4, while
II
L
the deprotonation of [Cu ClHL ] gave an octanuclear structure
[CuII8L 8(H2O)4], in which two cyclic tetranuclear species are
L
bridged by a coordination bond between an carboxylate oxygen
and a CuII ion. The result apparently demonstrates that the chiral-
ity is an important factor to construct definitely different assembly
structure. The present complexes can be advanced self-comple-
mentary building block. The studies along this line should be
developed.
[4] (a) M. Freemantle, Chem. Eng. News 81 (2003) 27;
(b) L. Pasteur, Ann. Chim. Phys. 24 (1848) 442;
(c) A. Collet, M.J. Brienne, J. Jacques, Chem. Rev. 80 (1980) 215;
(d) L. Perez-Garcia, D.B. Amabilino, Chem. Soc. Rev. 31 (2004) 342;
(e) T. Konno, G. Yoshimura, G. Masuyama, M. Hirotsu, Bull. Chem. Soc. Jpn. 75
(2002) 2185.
[5] (a) K. Yamanari, J. Hidaka, Y. Shimura, Bull. Chem. Soc. Jpn. 46 (1973) 3724;
(b) G. Kauffman, I. Bernal, H.W. Schütt, Enantiomer 4 (1999) 33;
(c) S.G. Telfer, T. Sato, T. Harada, R. Kuroda, J. Lefebvre, D.B. Leznoff, Inorg.
Chem. 43 (2004) 6168.
Acknowledgement
[6] N. Matsumoto, Y. Motoda, T. Matsuo, T. Nakashima, N. Re, F. Dahan, J.P.
Tuchagues, Inorg. Chem. 38 (1999) 1165.
[7] T. Iihoshi, S. Imatomi, T. Hamamatsu, R. Kitashima, N. Matsumoto, Chem. Lett.
(2006) 792;
T. Hashibe was supported by the Research Fellowship for young
scientists of the Japan Society for the Promotion of Science (No.
00228936).
(b) T. Iihoshi, T. Sato, M. Towatari, N. Matsumoto, M. Kojima, Bull. Chem. Soc.
Jpn. 28 (2009) 458.
[8] O. Kahn, Molecular Magnetism, VCH, Weinhein, 1993.
[9] (a) CrystalStructure 3.7.0, Crystal Structure Analysis Package, Rigaku and
Rigaku/MSC (2000–2005), 9009 New Trails Dr. The Woodlands, TX 77381,
USA.;
Appendix A. Supplementary data
CCDC 833502 & 833503 contains the supplementary crystallo-
II
II
(b) CRYSTALS Issue 10, D.J. Watkin, C.K. Prout, J.R. Carruthers, P.W. Betteridge,
Chemical Crystallography Laboratory, Oxford, UK.
DL
L
graphic data for [Cu L (H2O)]4 (1’) at 296
K and [Cu 8L 8
(H2O)4]ꢀ22H2O (2’) at 150 K. These data can be obtained free of
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
deposit@ccdc.cam.ac.uk. Supplementary data associated with this
article can be found, in the online version, at doi:10.1016/
[10] (a) A. Michaelides, S. Skoulika, E.G. Bakalbassis, J. Mrozinski, Cryst. Growth
Des. 3 (2003) 487;
(b) M. Tadokoro, T. Ohhara, Y. Ohhara, Y. Miyasato, T. Yamada, T. Kikuchi, I.
Tanaka, K. Kurihara, M. Oguni, K. Nakasuji, O. Yamamuro, K. Ryota, J. Phys.
Chem. B 114 (2010) 2091.
[11] (a) N. Matsumoto, T. Akui, H. Murakami, J. Kanesaka, A. Ohyoshi, H. Okawa, J.
Chem. Soc., Dalton Trans. (1988) 1021;
(b) E. Colacio, C. López-Magaña, V. McKee, A. Romerosa, J. Chem. Soc., Dalton
Trans. (1999) 2923.
[12] C.J. O’Connor, Prog. Inorg. Chem. 29 (1982) 203.
[13] (a) Y. Nakano, W. Mori, N. Okuda, A. Nakahara, Inorg. Chim. Acta 35 (1979) 1;
(b) J.C. Dewan, S.L. Lippard, Inorg. Chem. 19 (1980) 2079;
(c) C. Benelli, R.K. Bunting, D. Gatteschi, C. Zanchini, Inorg. Chem. 23 (1984)
3074;
References
[1] J.M. Lehn, Supramolecular Chemistry, VCH, Weinheim, Germany, 1995.
[2] (a) D.L. Caulder, K.N. Raymond, Acc. Chem. Res. 32 (1999) 975;
(b) Q.F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi,
M. Fujita, Science 328 (2010) 1144;
(c) B. Olenyuk, M.D. Levin, J.A. Whiteford, J.E. Shield, P.J. Stang, J. Am. Chem.
Soc. 121 (1999) 10434;
(d) A. Müller, S. Roy, Coord. Chem. Rev. 245 (2003) 153.
[3] (a) G. Kolks, C.R. Frihart, H.N. Rabinowitz, S.J. Lippard, J. Am. Chem. Soc. 98
(1976) 5720;
(d) N. Matsumoto, H. Murakami, T. Akui, J. Honbo, H. Okawa, A. Ohyoshi, Bull.
Chem. Soc. Jpn. 59 (1986) 1609;
(e) N. Matsumoto, T. Nozaki, H. Ushio, K. Motoda, M. Ohba, G. Mago, H. Okawa,
J. Chem. Soc., Dalton Trans. (1993) 2157;
(f) E. Colacio, M. Ghazi, R. Kivekäs, M. Klinga, F. Lloret, J.M. Moreno, Inorg.
Chem. 39 (2000) 2770;
(g) E. Colacio, J.M. Domingues-Vera, M. Ghazi, R. Kivekas, M. Klinga, J.M.
Moreno, Inorg. Chem. 37 (1998) 3040;
(b) I. Katsuki, Y. Motoda, Y. Sunatsuki, N. Matsumoto, T. Nakashima, M.
Kojima, J. Am. Chem. Soc. 124 (2002) 629;
(c) Y. Shii, Y. Motoda, T. Matsuo, F. Kai, T. Nakashima, J.P. Tuchagues, N.
Matsumoto, Inorg. Chem. 38 (1999) 3513;
(d) M. Mimura, T. Matsuo, Y. Motoda, N. Matsumoto, T. Nakashima, M. Kojima,
Chem. Lett. (1998) 691;
(e) I. Katsuki, N. Matsumoto, M. Kojima, Inorg. Chem. 39 (2000) 3350;
(f) M. Mimura, T. Matsuo, T. Nakashima, N. Matsumoto, Inorg. Chem. 37
(1998) 3553;
(h) N. Matsumoto, Y. Mizuguchi, G. Mago, S. Eguchi, H. Miyasaka, T.
Nakashima, J.-P. Tuchagues, Angew. Chem., Int. Ed. Engl. 36 (1997) 1860.
[14] (a) T. Yoshida, M. Towatari, T. Sato, N. Matsumoto, N. Re, J. Mrozinski, Bull.
Chem. Soc. Jpn. 82 (2009) 467;
(b) L.H. Jia, Z.L. Liu, L. Zhu, W. Liu, K.L. Yao, J. Chem. Phys. 127 (2007) 064702;
(c) K.Y. Choi, S.Y. Park, A.K. Shin, J. Chem. Crystallogr. 36 (2006) 7;
(d) J. Pasán, J. Sanchiz, C. Ruiz-Pérez, F. Lloret, M. Julve, Eur. J. Inorg. Chem.
(2004) 4081.
(g) Y. Sunatsuki, Y. Motoda, N. Matsumoto, Coord. Chem. Rev. 226 (2002) 199;