368
M.M. Omar et al. / Spectrochimica Acta Part A 73 (2009) 358–369
Table 7
Biological activity of HL and its metal complexes.
Sample
Bacillus simplex
Exiguobacterium acetylicum
Pseudomonas putida
E. coli bacteria
C, mg/l
HL
5
2.5
++
++
++
++
++
++
++
+++
++
++
+
1
++
+
+
+
+
++
+
+
+
5
2.5
++
++
++
++
++
++
+
++
+
++
++
1
5
2.5
++
++
++
++
++
++
++
++
++
++
++
1
5
++
+
+
+
+
+
+
+
2.5
+
+
+
+
+
+
+
+
1
+
+
+
+
+
+
+
+
+
+
++
++
++
++
++
++
++
++
+++
++
++
+
++
++
++
++
++
++
++
++
++
++
++
++
++
+
+
+
++
++
+
+
+
++
++
++
++
++
++
+++
+++
++
++
++
++
++
+
+
+
++
+
+
+
++
++
[Mn(L)Cl(H2O)2]·H2O
[Fe(L)Cl(H2O)2]Cl·2H2O
[Co(L)Cl(H2O)2]·H2O
[Ni(L)Cl(H2O)2]·H2O
[Cu(L)Cl(H2O)2]·3H2O
[Zn(L)Cl(H2O)2]·H2O
[Cd(L1)Cl(H2O)2]·2H2O
[Th(L)Cl(H2O)2]Cl2·2H2O
[UO2(L)(CH3COO)(H2O)2]·2H2O
Cefepime
+
++
++
+
+
++
+
+
++
The test was done using the diffusion agar technique.
Inhibition values = 0.1–0.6 cm beyond control = +.
Inhibition values = 0.65–1.0 cm beyond control = ++.
Inhibition values = 1.1–1.5 cm beyond control = +++.
(b) Exiguobacterium acetylicum bacteria (G+)
plexes might be recommended and/or established a new line for
search to new antitumour particularly when one knows that many
workers studied the possible antitumour action of many synthetic
and semisynthetic compounds, e.g., Hodnett et al. [42] and Hick-
man [43]. Such compounds may have a possible antitumour effect
since Gram-negative bacteria are considered a quantitative micro-
biological method testing beneficial and important drugs in both
clinical and experimental tumour chemotherapy [44].
The biological activity of the HL ligand is higher than that of
standard cefepime and less than Cd(II) and Zn(II) complexes. All
the complexes have higher activity than the standard cefepime.
The biological activity of the complexes follow the order
Cd(II) > Zn(II) > HL = Mn(II) = Ni(II) = Cu(II) = UO2(II) > Fe(III) =
Co(III) = Th(IV) = cefepime.
(c) Using Pseudomonas putida bacteria (G−)
The biological activity of the ligand HL equals to that of the
standard cefepime and Cu(II), Mn(II) and Zn(II) complexes
and higher than that of the rest of complexes. The biolog-
ical activity of the complexes are found to follow the order
HL = cefepime = Cu(II) = Mn(II) = Zn(II) > Cd(II) > Ni(II) > Fe(III) =
Co(II) = Th(IV) = UO2(II).
References
[1] N.K. Kaushik, A.K. Mishra, Ind. J. Chem. 42A (2003) 2762.
[2] N. Manav, N. Gandhi, N.K. Kaushik, J. Therm. Anal. Calorim. 61 (2000) 127.
[3] A.K. Mishra, N. Manav, N.K. Kaushik, Spectrochim. Acta (Part A) 61 (2005) 3097.
[4] M.G. Abd El, Wahed, E.M. Nour, S. Teleb, S. Fahim, J. Therm. Anal. Calorim. 76
(2004) 343.
[5] N.K. Singh, A. Srivastava, A. Sodhi, P. Ranjan, Trans. Met. Chem. 25 (2000) 133.
[6] N.H. Patel, H.M. Parekh, M.N. Patel, Tans. Met. Chem. 30 (2005) 13.
[7] Y.P. Tian, C.Y. Duan, C.Y. Zhao, X.Z. You, T.C.W. Mak, Z. Zhang, Inorg. Chem. 36
(1997) 1247.
(d) E. coli bacteria (G−)
The biological activity of the free ligand HL is higher
than that of cefepime and all complexes. The bio-
logical activity of the complexes follow the order
HL > cefepime > UO2(II) > Mn(II) = Fe(III) = Co(II) = Ni(II) = Cu(II) =
Zn(II) = Cd(II) = Th(IV).
[8] S. Karabocek, S. Guner, N.J. Karabocek, Inorg. Biochem. 66 (1997) 57.
[9] J. Kaizer, Z. Zsigmond, I. Ganszky, G. Speier, M. Giorgi, M. Reglier, Inorg. Chem.
46 (2007) 4660.
[10] T. Sixt, W. Kaim, Inorg. Chim. Acta 300 (2000) 762.
[11] M.M.T. Khan, S.B. Halligudi, S. Shukla, Z.A. Shaikh, J. Mol. Catal. 57 (1990) 301.
[12] D. Bose, J. Banerjee, S.K.H. Rahaman, G. Mostafa, H.K. Fun, W.R.D. Bailey, M.J.
Zaworotko, B.K. Ghosh, Polyhedron 23 (2004) 2045.
[13] H.A. El-Boraey, J. Therm. Anal. Calorim. 81 (2005) 339.
[14] A.S.M. Al-Shirif, H.M. Abdel-Fattah, J. Therm. Anal. Calorim. 71 (2003) 643.
[15] J. Estrela dos Santos, E.R. Dockal, E.T.G. Cavalheiro, J. Therm. Anal. Calorim. 79
(2003) 243.
[16] A.I. Vogel, Quantitative Inorganic Analysis Including Elemental and Instrumen-
tal Analysis, 2nd ed., Longmans, London, 1962.
[17] R. Sarin, K.N. Munshi, J. Inorg. Nucl. Chem. 34 (1972) 581.
[18] H. Dugas, C. Penney, Bioorganic Chemistry, Springer, New York, 1981, p. 435.
[19] J. Bjerrum, Kgl.“Metal Amine Formation in Aqueous Solution”,(Haase, open-
hagen),1941.
Also the data listed in Table 7 shows that E. Coli is inhibited by
Co(II), Cd(II) complexes and UO2(II) complexes of HL ligand. The
importance of this lies in the fact that these complexes could be
applied fairly in the treatment of some common diseases caused
by E. Coli, e.g., Septicaemia, Gastroenteritis, Urinary tract infections
and hospital acquired infections [38,39].
However, Cd(II), Cu(II) and Zn(II) complexes of HL ligand were
specialised in inhibiting Gram-positive and Gram-negative bacte-
rial strains (Bacillus simplex, Pseudomonas putida and Exiguobac-
terium acetylicum). The importance of this unique property of the
investigated Schiff base complexes lies in the fact that, it could be
applied safely in the treatment of infections caused by any of these
particular strains.
[20] H. Irving, R.J.P. Williams, Nature 162 (1948) 746.
[21] H. Irving, R.J.P. Williams, J. Chem. Soc. (1953) 3192.
[22] R.D. Jones, D.A. Summerville, F. Basolo, Chem. Rev. 79 (1979) 139.
[23] L.E. Orgel, An Introduction to Transition Metal Chemistry Ligand Field Theory,
Methuen, 1966, p. 55.
[24] J.A. Dean, Lange’s Hand Book of Chemistry, 14th ed., Megraw-Hill, New York,
1992, p. 35.
[25] M. Hossain, S.K. Chattopadhyay, S. Ghosh, Polyhedron 16 (1997) 1793.
[26] A.A. Soliman, J. Therm. Anal. 63 (2001) 221.
4. Conclusion
[27] Y.M. Issa, H.M. Abdel-Fattah, M.M. Omar, A.A. Soliman, Monatsh. Chem. 126
(1995) 163.
[28] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic
Chemistry, 6th ed., Wiley, New York, 1999.
[29] D.R. Zhu, Y. Song, Y. Xu, Y. Zhang, S.S.S. Raj, H.K. Fun, X.Z. You, Polyhedron 19
(2000) 2019.
[30] M.A. Ali, S.M.M.H. Majumder, R.J. Butcher, J.P. Jasinski, J.M. Jasinski, Polyhedron
16 (1997) 2749.
[31] N. Mondal, D.K. Dey, S. Mitra, K.M. Abdul Malik, Polyhedron 19 (2000) 2707.
[32] J. Kohout, M. Hvastijova, J. Kozisek, J.G. Diaz, M. Valko, L. Jager, I. Svoboda, Inorg.
Chim. Acta 287 (1999) 186.
[33] J. Manonmani, R. Thirumurugan, M. Kandaswamy, M. Kuppayee, S.S.S. Raj, M.N.
Ponnuswamy, G. Shanmugam, H.K. Fun, Polyhedron 19 (2000) 2011.
Since almost all scientists working in the field of search for
new antitumours depend basically on the line of antibiotics affect-
ing Gram-negative bacteria [40–42], and since there are certain
organisms which have proved difficult to treat and most of them
are Gram-negative rods. It is therefore believed that all the com-
plexes which are biologically active against both the Gram-negative
strains may has something to do with the barrier function of the
envelope of these Gram-negative strains activity, acting in a way
similar to that described by Nikaido and Nakae. [40] and Brown
[41]. Therefore, it is claimed here that the synthesis of these com-