A R T I C L E S
Stanley and Hartwig
metrical allylic electrophiles is presently limited to rhodium-
catalyzed reactions of N3-benzoyl thymine or a dihydropyrimidin-
2(3H)-one with enantioenriched secondary allylic carbonates
with retention of configuration.43,44
The products of these reactions are relevant to medicinal
chemistry because of the established biological activity associ-
ated with benzimidazole,45 imidazole,46 and purine derivatives.47
For example, the chiral N-allyl imidazoles are advanced
intermediates to a class of kinase inhibitors,48,49 while the N-allyl
purines are chiral precursors to a family of antiretroviral
drugs.50-53 Furthermore, the N-allyl heterocycle products
contain a terminal olefin that makes possible the straightforward
(19) Pouy, M. J.; Leitner, A.; Weix, D. J.; Ueno, S.; Hartwig, J. F. Org.
Lett. 2007, 9, 3949–3952.
(20) Markovic, D.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 11680–
11681.
(21) Lee, J. H.; Shin, S.; Kang, J.; Lee, S. J. Org. Chem. 2007, 72, 7443–
7446.
Figure 1. Cyclometalated iridium catalyst precursors (1, 2a, and 2b) and
phosphoramidite ligands (L1 and L2).
(22) Spiess, S.; Berthold, C.; Weinhofen, R.; Helmchen, G. Org. Biomol.
Chem. 2007, 5, 2357–2360.
(23) Yamashita, Y.; Gopalarathnam, A.; Hartwig, J. F. J. Am. Chem. Soc.
2007, 129, 7508–7509.
syntheses of R-imidazolyl alcohol, R-purinyl alcohol, ꢀ-imida-
zolyl alcohol, and ꢀ-purinyl alcohol derivatives.
(24) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2007, 46, 3139–3143.
(25) Singh, O. V.; Han, H. J. Am. Chem. Soc. 2007, 129, 774–775.
(26) Nemoto, T.; Sakamoto, T.; Matsumoto, T.; Hamada, Y. Tetrahedron
Lett. 2006, 47, 8737–8740.
(27) Shekhar, S.; Trantow, B.; Leitner, A.; Hartwig, J. F. J. Am. Chem.
Soc. 2006, 128, 11770–11771.
(28) Polet, D.; Alexakis, A.; Tissot-Croset, K.; Corminboeuf, C.; Ditrich,
K. Chem.sEur. J. 2006, 12, 3596–3609.
(29) Leitner, A.; Shekhar, S.; Pouy, M. J.; Hartwig, J. F. J. Am. Chem.
Soc. 2005, 127, 15506–15514.
(30) Welter, C.; Moreno, R. M.; Streiff, S.; Helmchen, G. Org. Biomol.
Chem. 2005, 3, 3266–3268.
(31) Weihofen, R.; Dahnz, A.; Tverskoy, O.; Helmchen, G. Chem. Commun.
2005, 3541–3543.
(32) Polet, D.; Alexakis, A. Org. Lett. 2005, 7, 1621–1624.
(33) Leitner, A.; Shu, C.; Hartwig, J. F. Org. Lett. 2005, 7, 1093–1096.
(34) Miyabe, H.; Matsumura, A.; Moriyama, K.; Takemoto, Y. Org. Lett.
2004, 6, 4631–4634.
(35) Shu, C.; Leitner, A.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43,
4797–4800.
(36) Tissot-Croset, K.; Polet, D.; Alexakis, A. Angew. Chem., Int. Ed. 2004,
43, 2426–2428.
(37) Welter, C.; Koch, O.; Lipowsky, G.; Helmchen, G. Chem. Commun.
2004, 896–897.
We report the formation of enantioenriched, branched N-allyl
heterocycles from reactions of benzimidazoles, imidazoles, and
purines with achiral linear allylic carbonates in the presence of
single-component iridium catalysts. The new iridium catalysts,
along with the proper base, improve the efficiency of the
allylation process, overcome isomerization of the product to the
enamine, and lead to the formation of products with high
enantioselectivity, high regioselectivity for addition to the more
substituted position of the allyl electrophile, and high selectivity
for the addition to the N9 position over the N7 position of
purines. A combination of competition experiments, kinetic
studies, and experiments on catalyst deactivation create an
improved understanding of the activity and stability of the
metallacyclic iridium catalysts. In addition to revealing a new
class of asymmetric N-allylation reactions, these studies led to
the identification of an appropriate iridium catalyst for base-
free N-allylations of benzimidazole and imidazole nucleophiles.
(38) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem.
Soc. 2003, 125, 14272–14273.
(39) Lipowsky, G.; Helmchen, G. Chem. Commun. 2004, 116–117.
(40) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164–
15165.
(41) Weihofen, R.; Tverskoy, O.; Helmchen, G. Angew. Chem., Int. Ed.
2006, 45, 5546–5549.
(42) Gandelman, M.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44,
2393–2397.
Results and Disscussion
Catalyst Identification and Optimization of Reaction Condi-
tions. We previously showed that complex 1 (Figure 1), which
is generated from [Ir(COD)Cl]2, phosphoramidite ligand L1 in
Figure 1, and base, catalyzes asymmetric allylic substitutions
with weakly basic nitrogen nucleophiles (arylamines), as well
as basic nitrogen nucleophiles (benzylic amines and alkyl-
amines), to form branched allylic substitution products.38 Thus,
initial studies to develop iridium-catalyzed asymmetric N-
allylations of nitrogen heterocycles containing acidic N-H
bonds were conducted with preformed metallacycle 1 as catalyst.
The model reaction of methyl cinnamyl carbonate (3a) with
benzimidazole (4a) was selected to test the viability of metal-
lacycle 1 as a catalyst for allylic substitutions with nitrogen-
containing heterocycles.
(43) Evans, P. A.; Lai, K. W.; Zhang, H.-R.; Huffman, J. C. Chem.
Commun. 2006, 844–846.
(44) Evans, P. A.; Qin, J.; Robinson, J. E.; Bazin, B. Angew. Chem., Int.
Ed. 2007, 46, 7417–7419.
(45) Alamgir, M.; Black, D. S. C.; Kumar, N. Top. Heterocycl. Chem. 2007,
9, 87–118.
(46) De Luca, L. Curr. Med. Chem. 2006, 13, 1–23.
(47) Legraverend, M.; Grierson, D. S. Bioorg. Med. Chem. 2006, 14, 3987–
4006.
(48) Graczyk, P. P.; et al. Bioorg. Med. Chem. Lett. 2005, 15, 4666–4670.
(49) Rech, J. C.; Yato, M.; Duckett, D.; Ember, B.; LoGrasso, P. V.;
Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 490–
491.
(50) Simons, C. Nucleoside Mimetics. Their Chemistry and Biological
Properties.; Gordon and Breach: Australia, 2001.
(51) Song, G. Y.; Paul, V.; Choo, H.; Morrey, J.; Sidwell, R. W.; Schinazi,
R. F.; Chu, C. K. J. Med. Chem. 2001, 44, 3985–3993.
(52) Agrofoglio, L. A.; Challand, S. R. Acyclic, Carbocyclic and L-
Nucleosides; Kluwer Academic: Dordrecht, 1998.
(53) Anastasi, C.; Quelever, G.; Burlet, S.; Garino, C.; Souard, F.; Kraus,
J.-L. Curr. Med. Chem. 2003, 10, 1825–1843.
In contrast to reactions of amines with methyl cinnamyl
carbonate, no reaction occurred between benzimidazole and
methyl cinnamyl carbonate (Table 1, entry 1). The same reaction
with added base did occur, but this reaction conducted without
9
8972 J. AM. CHEM. SOC. VOL. 131, NO. 25, 2009