Enzymatic Kinetic Resolution of 1,3-Dioxolan-4-one and 1,3-Oxathiolan-5-one
FULL PAPERS
2.58 (sept, J¼7.0, 1H), 2.12 (s, 3H), 1.17 (d, J¼7.0 Hz, 6H); tr,GC
(min)¼17.7 (R), 18.6 (S).
[13] L. K. Naeger, N. A. Margot, M. D. Miller, Antimicrob.
Agents Chemother. 2003, 46, 2179 2184.
[14] A. Popp, J. Stohrer, H. Petersen, A. Gilch, J. Rockinger-
Mechlem, (Consortium fuer elektrochemische Industrie
GmbH, Germany), EP 1229127 A1; Chem. Abstr. 2002,
137, 139499.
Typical Procedure for the Preparation of (R)-(þ)-
Isobutyric Acid 4-Oxo-[1,3]dioxolan-2-ylmethyl Ester
(2)
[15] H. Spahn-Langguth, Pharm. Unserer Zeit 1996, 25, 198
219.
All enzymatic resolutions were performed according to this
method.
[16] W. H. J. Boesten, P. Riebel, G. Niederhumer, (DSM Fine
Chemicals Austria Nfg G. m. b. H.þCo. K.-G., Austria),
WO 2001092199 A1, 2001; Chem. Abstr. 2001, 136, 5726.
[17] R. Rothermel, M. Hanack, Liebigs Ann. Chem. 1991,
1013 1020.
[18] A. Wissner, Tetrahedron Lett. 1978, 2749 2752.
[19] S. Abazi, L. Parra Rapado, K. Schenk, P. Renaud, Eur. J.
Org. Chem. 1999, 477 483.
[20] W. H. Pearson, M.-C. Cheng, J. Org. Chem. 1987, 52,
1353 1355.
[21] R. Ramage, A. M. MacLeod, G. W. Rose, Tetrahedron
1991, 47, 5625 5639.
(R,S)-2 (50.0 g, 0.27 mol) was dissolved in a mixture of
TBME (185 mL) and MeOH (185 mL) in a 1-L 4-necked flask.
Novozym 435 (NZ435, 2.6 g) was added and the resulting mix-
ture was stirred vigorously at 308C. After the desired ee was
reached (GC control) the enzyme was filtered off and the sol-
vent was removed under reduced pressure. The residue was
then taken up in TBME (100 mL) and washed twice with water
(100 mL each). The organic phase was separated, dried over
sodium sulfate and then freed from solvent under vacuum.
The crude product was purified by distillation to give the prod-
uct (R)-2 as a colorless liquid; overall yield: 10.3 g (0.05 mol,
20%).
[22] K. Faber, Biotransformations in Organic Chemistry,
Springer Verlag, Berlin, Germany, 1997.
[23] S. M. Roberts, G. Casy, M.-B. Nielsen, Biocatalysis for
Fine Chemicals Synthesis, John Wiley & Son Ltd, New
York, Chichester, Brisbane, Toronto, Singapore, 1999.
[24] U. T. Bornscheuer, R. J. Kazlauskas, Hydrolases in Or-
ganic Synthesis: Regio- or Stereoselective Biotransforma-
tions, John Wiley & Son Ltd, New York, Chichester,
Brisbane, Toronto, Singapore, 1999.
[25] The following enzymes were used: lipases: Alcaligines
sp., Aspergillus niger, Aspergillus oryzae, Candida ant-
arctica A, Candida antarctica B, Candida cylindracea,
Candida lipolytica, Candida rugosa, Mucor javanicus,
Mucor miehei, Penicilliumroqueforti , Pseudomonas ce-
pacia, Pseudomonas fluorescens, Pseudomonas sp., Rhi-
zomucor miehei, Rhizopus arrhizus, Rhizopus niveus,
Thermomyces lanuginose, pig pancreas, wheat germ es-
terases: acetylcholine esterase from Elektrophorus elec-
tricus, Bacillus species, Bacillus stearothermophilus, Ba-
cillus thermoglucosidasius, Candida lipolytica, Mucor
miehei, Saccharomyces cerevisiae, Thermoanaerobium
brockii, horse liver, pig liver.
References and Notes
[1] L. J. Wilson, W. B. Choi, T. Spurling, D. C. Liotta, R. F.
Schinazi, D. Cannon, G. R. Painter, M. St. Clair, P. A.
Furman, Bioorg. Med. Chem. Lett. 1993, 3, 169 174.
[2] W. B. Choi, L. J. Wilson, S. Yeola, D. C. Lotta, R. F. Schi-
nazi, J. Am. Chem. Soc. 1991, 113, 9377 9379.
[3] D. C. Lotta, R. F. Schinazi, W. B. Choi, (Emory Universi-
ty, USA), WO 9214743 A2, 1992; Chem. Abstr. 1993, 118,
22551.
[4] D. C. Liotta, W. B. Choi, (Emory University, USA), WO
9111186 A1, 1991; Chem. Abstr. 1991, 115, 208463.
[5] L. K. Hoong, L. E. Strange, D. C. Liotta, G. W. Koszalka,
C. L. Burns, R. F. Schinazi, J. Org. Chem. 1992, 57, 5563
5565.
[6] Y. Yao, Y. F. Wang, (Altus Biologics Inc., USA), WO
2000022157 A1, 2000; Chem. Abstr. 2000, 132, 278245.
[7] H. O. Kim, R. F. Schinazi, S. Nampalli, K. Shanmugana-
than, D. L. Cannon, A. J. Alves, L. S. Jeong, J. W. Beach,
C. K. Chu, J. Med. Chem. 1993, 36, 30 37.
[26] C.-S. Chen, Y. Fujimoto, G. Girdaukas, C. J. Sih, J. Am.
Chem. Soc. 1982, 104, 7294 7299.
[27] For the calculation of the enantiomeric ratio E of a ki-
netic resolution it is essential to know either the enantio-
meric excess (ee) of the substrate and the product or the
extent of conversion c together with one enantiomeric
excess (substrate or product). In our case, the resolution
of (R,S)-2 affords only one chiral ™product∫, the remain-
ing enantiomer. The actual reaction product of the reso-
lution is the aldehyde 6, which is not chiral. Therefore for
the calculation of the E value an appropriate method for
the determination of the conversion rate was necessary.
On an industrial scale the measurement of c with
NMR spectroscopic methods is sufficient and, what is
more important, easy and fast. On a laboratory scale
we used another method. The conversion c was deter-
mined using an internal standard. This method provided
[8] A. H. Corbett, J. C. Rublein, Current Opinion in Investi-
gational Drugs 2001, 2, 348 353.
[9] P. A. Furman, D. Cleary, L. C. Trost, J. W. Bigley, G. R.
Painter, Drugs Future 2000, 25, 454 461.
[10] P. A. Furman, J. Jeffrey, L. L. Kiefer, J. Y. Feng, K. S. An-
derson, K. Borroto-Esoda, E. Hill, W. C. Copeland, C. K.
Chu, J.-P. Sommadossi, I. Liberman, R. F. Schinazi, G. R.
Painter, Antimicrobial Agents and Chemotherapy 2001,
45, 158 165.
[11] P. A. Furman, G. R. Painter, D. Barry, F. Rousseau, (Tri-
angle Pharmaceuticals, Inc., USA), WO 2000025797 A1,
2000; Chem. Abstr. 2000, 132, 318062.
[12] Z. Gu, M. A. Wainberg, N. Nguyen-Ba, L. L×Heureux, J.-
M. De Muys, T. L. Bowlin, R. F. Rando, Antimicrob.
Agents Chemother. 1999, 43, 2376 2382.
Adv. Synth. Catal. 2004, 346, 682 690
asc.wiley-vch.de
¹ 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
689