Investigation of Protein Kinase C Inhibitors
A R T I C L E S
oxygen as well as other reactive oxygen species that kill cells.
Generation of photosensitizers that can be activated by longer
wavelength light, which can penetrate deeper into tissue, is
crucial. The nine photosensitizer compounds (none perylene-
quinones) currently in clinical use as photoactivated anticancer
agents encompass three related structural classes: porphyrins,
chlorins, and phthalocyanins.21 While optimization of current
photosensitizers is warranted, the multiple criteria of desirable
photosensitizers makes discovery of new classes critical to
furthering the practice of photodynamic therapy.
The perylenequinone core is a potent chromophore that
permits the use of these compounds as photosensitizers. Upon
exposure to light, perylenequinones initiate the generation of
reactive oxygen species with high quantum efficiency.20 Fur-
thermore, these compounds selectively bind the C1 regulatory
domain of protein kinase C (PKC),22,23 some forms of which
are upregulated in cancer cells and associated with growth.24
For these reasons, the perylenequinones are candidates for
photodynamic therapy of cancer;20 light-induced activity has
been seen with the natural products against selected tumor cell
lines.25 In addition, they have displayed antiviral26 and immu-
notherapeutic27 properties. The development of new classes of
PDT agents of defined molecular structure, with lower aggrega-
tion tendency, longer absorption wavelengths, high quantum
yields, greater stability, and greater selectivity against cancer
cells is highly desirable.
The perylenequinones are thought to cause cell apoptosis by
two pathways: (1) light-induced production of singlet oxygen
and (2) PKC inhibition. Considerable attention has been devoted
to the development of potent and specific PKC inhibitors.24 The
catalytic domain-acting PKC inhibitors, such as staurosporin
(PKC, IC50 ) 9 nM) and other indolocarbazoles, are highly
potent but not specific for PKC, since they also inhibit other
protein kinases.28 Since the discovery of staurosporin, the
structurally related catalytic site inhibitors ruboxistaurin (PKCꢀΙ,
IC50 ) 4.7 nM; PKCꢀΙΙ, IC50 ) 5.9 nM)29 and enzastaurin
(PKCꢀΙ, IC50 ) 30 nM; PKCꢀΙΙ, IC50 ) 30 nM)30 have been
found to be more selective for the PKCꢀ isozyme relative to
other PKC isozymes and kinases leading to important new
diabetes treatments.31 Significantly, the perylenequinones have
demonstrated to be both potent and specific for PKC [Calphostin
C (1c): PKC, IC50 ) 0.05-0.46 µM; PKA, IC50 ) >100 µM;
PPK, IC50 ) >100 µM; Cercosporin (3): PKC, IC50 ) 0.6-1.3
µM; PKA, IC50 ) >500 µM; PPK, IC50 ) >180 µM] most likely
because they act on a regulatory domain which is unique to
PKC.22,23 To date, evaluation of the perylenequinones as PKC
inhibitors has been confined to natural product derivatives or
simple analogues due to limitations of available synthetic
methods.20,23,32,33 Novel perylenequinones will allow determi-
nation of the structural features necessary for PKC inhibition
as well as generation of structures with improved photodynamic
properties.
(21) (a) McCaughan, J. S., Jr. Drugs Aging 1999, 15, 49–68. (b) Detty,
M. R. Expert Opin. Ther. Patents 2001, 11, 1849–1860. (c) Lane, N.
Sci. Am. 2003, 288, 38–41. (d) Dolmans, D. E. J. G. J.; Fukumura,
D.; Jain, R. K. Nat. ReV. Cancer 2003, 3, 380–387. (e) Allison, R. R.;
Downie, G. H.; Cuenca, R.; Hu, X.-H.; Childs, C. J. H.; Sibata, C. H.
Photodiagn. Photodyn. Ther. 2004, 1, 27–42. (f) Triesscheijn, M.;
Baas, P.; Schellens, J. H. M.; Stewart, F. A. Oncologist 2006, 11,
1034–1044. (g) Moreira, L. M.; dos Santos, F. V.; Lyon, J. P.;
Maftoum-Costa, M.; Pacheco-Soares, C.; da Silva, N. S. Aust. J. Chem.
2008, 61, 741–754.
(22) (a) Kobayashi, E.; Ando, K.; Nakano, H.; Tamaoki, T. J. Antibiot.
1989, 42, 153–155. (b) Kobayashi, E.; Ando, K.; Nakano, H.; Iida,
T.; Ohno, H.; Morimoto, M.; Tamaoki, T. J. Antibiot. 1989, 42, 1470–
1474. (c) Kobayashi, E.; Nakano, H.; Morimoto, M.; Tamaoki, T.
Biochem. Biophys. Res. Commun. 1989, 159, 548–553. (d) Bruns,
R. F.; Miller, F. D.; Merriman, R. L.; Howbert, J. J.; Heath, W. F.;
Kobayashi, E.; Takahashi, I.; Tamaoki, T.; Nakano, H. Biochem.
Biophys. Res. Commun. 1991, 176, 288–293.
Results and Discussion
Retrosynthetic Considerations. We desired a synthetic strat-
egy to permit a flexible approach to all of the perylenequinone
natural products 1-6 (Figure 1) as well as several derivatives.
Examination of prior approaches to the calphostins4 revealed a
common theme in that the stereochemistry of the C7-subsitution
(23) Diwu, Z.; Zimmermann, J.; Meyer, T.; Lown, J. W. Biochem.
Pharmacol. 1994, 47, 373–385.
(24) (a) da Rocha, A. B.; Mans, D. R. A.; Regner, A.; Schwartsmann, G.
Oncologist 2002, 7, 17–33. (b) Gonzalez-Guerrico, A. M; Meshki, J.;
Xiao, L.; Benavides, F.; Conti, C. J.; Kazanietz, M. G. J. Biochem.
Mol. Biol. 2005, 38, 639–645. (c) Griner, E. M.; Kazanietz, M. G.
Nat. ReV. Cancer 2007, 7, 281–294. (d) Mackay, H. J.; Twelves, C. J.
Nat. ReV. Cancer 2007, 7, 554–562.
(26) (a) Hudson, J. B.; Imperial, V.; Haugland, R. P.; Diwu, Z. Photochem.
Photobiol. 1997, 65, 352–354. (b) Hirayama, J.; Ikebuchi, K.; Abe,
H.; Kwon, K.-W.; Ohnishi, Y.; Horiuchi, M.; Shinagawa, M.; Ikuta,
K.; Kamo, N.; Sekiguchi, S. Photochem. Photobiol. 1997, 66, 697–
700. (c) Wang, H. K.; Xie, J. X.; Chang, J. J.; Hwang, K. M.; Liu,
S. Y.; Ballas, L. M.; Jiang, J. B.; Lee, K. H. J. Med. Chem. 1992, 35,
2717–2721.
(25) (a) Paul, B. T.; Babu, M. S.; Santhoshkumar, T. R.; Karunagaran, D.;
Selvam, G. S.; Brown, K.; Woo, T.; Sharma, S.; Naicker, S.;
Murugesan, R. J. Photochem. Photobiol., B 2009, 94, 38–44. (b)
Chiarini, A.; Whitfield, J. F.; Pacchiana, R.; Armato, U.; Dal Pra, I.
Biochim. Biophys. Acta 2008, 1783, 1642–1653. (c) Olivo, M.; Ali-
Seyed, M. Int. J. Oncol. 2007, 30, 537–548. (d) Maxhimer, J. B.;
Reddy, R. M.; Zuo, J. T.; Cole, G. W., Jr.; Schrump, D. S.; Nguyen,
D. M. J. Thorac. CardioVasc. Surg. 2005, 129, 53–63. (e) Xiao, Z.;
Hansen, C. B.; Allen, T. M.; Miller, G. G.; Moore, R. B. J. Pharm.
Pharmaceut. Sci. 2005, 8, 536–543. (f) Guo, B.; Hembruff, S. L.;
Villeneuve, D. J.; Kirwan, A. F.; Parissenti, A. M. Breast Cancer Res.
Treat. 2003, 82, 125–141. (g) Ma, L.; Tai, H.; Li, C.; Zhang, Y.; Wang,
Z.-H.; Ji, W.-Z. World J. Gastroenterol. 2003, 9, 485–490. (h) Ali,
S. M.; Olivo, M. Int. J. Oncol. 2002, 21, 1229–1237. (i) Ali, S. M.;
Olivo, M.; Yuen, G. Y.; Chee, S. K. Int. J. Oncol. 2001, 19, 633–
643. (j) Dubauskas, Z.; Beck, T. P.; Chumura, S. J.; Kovar, D. A.;
Kadkhodaian, M. M.; Shrivastav, M.; Chung, T.; Stadler, W. M.;
Rinker-Schaeffer, C. W. Clin. Cancer Res. 1998, 4, 2391–2398. (k)
Vandenbogaerde, A. L.; Delaey, W. S.; Vantieghem, A. M.; Himpens,
B. E.; Merlevede, W. S.; De Witte, P. A. Photochem. Photobiol. 1998,
67, 119–125. (l) Zhang, J.; Cao, E.-H.; Li, J.-F.; Zhang, T.-C.; Ma,
W.-J. J. Photochem. Photobiol., B 1998, 43, 106–111. (m) Pollack,
I. F.; Kawecki, S. J. Neuro-Oncol. 1997, 31, 255–66. (n) Diwu, Z.
Photochem. Photobiol. 1995, 61, 529–539. (o) Wang, H. K.; Xie, J. X.;
Chang, J. J.; Hwang, K. M.; Liu, S. Y.; Ballas, L. M.; Jiang, J. B.;
Lee, K. H. J. Med. Chem. 1992, 35, 2717–2721. (p) Kobayashi, E.;
Ando, K.; Nakano, H.; Iida, T.; Ohno, H.; Morimoto, M.; Tamaoki,
T. J. Antibiot. 1989, 42, 1470–1474.
(27) Leveugle, B. U.S. Patent 2001-264677, 2002.
(28) (a) Tamaoki, T.; Nomoto, H.; Takahashi, I.; Kato, Y.; Morimoto, M.;
Tomita, F. Biochem. Biophys. Res. Commun. 1986, 135, 397–402.
Reviews on Indolocarbazoles: (b) Nakano, H.; Omura, S. J. Antibiot.
2009, 62, 17–26. (c) Prudhomme, M. Curr. Pharm. Des. 1997, 3, 265–
290.
(29) (a) Ishii, H.; Jirousek, M. R.; Koya, D.; Takagi, C.; Xia, P.; Clemont,
A.; Bursell, S. E.; Kern, T. S.; Ballas, L. M.; Heath, W. F.; Stramm,
L. E.; Freener, E. P.; King, G. L. Science 1996, 272, 728–731. (b)
Jirousek, M. R.; Gillig, J. R.; Gonzalez, C. M.; Heath, W. F.;
McDonald, J. H.; Neel, D. A.; Rito, C. J.; Singh, U.; Stramm, L. E.;
Melikian-badalian, A.; Baevsky, M.; Ballas, L. M.; Hall, S. E.;
Winneroski, L. L.; Faul, M. M. J. Med. Chem. 1996, 39, 2664–2671.
(30) Faul, M. M.; Gilling, J. R.; Jirousek, M. R.; Ballas, L. M.; Schotten,
T.; Kahl, A.; Mohr, M. Bioorg. Med. Chem. Lett. 2003, 13, 1857–
1859.
(31) Avignon, A.; Sultan, A. Diabetes Metab. 2006, 32, 205–213.
(32) Paul, B. T.; Babu, M. S.; Santhoshkumar, T. R.; Karunagaran, D.;
Selvam, G. S.; Brown, K.; Woo, T.; Sharm, S.; Naicker, S.;
Murugesan, S. J. Photochem. Photobiol. B 2009, 94, 38–44.
(33) Kishi, T.; Saito, H.; Sano, H.; Takahashi, I.; Tamaoki, T. Eur. Pat.
Appl. EP-390181, 1990.
9
J. AM. CHEM. SOC. VOL. 131, NO. 26, 2009 9415