Organic Letters
Letter
(6) For reviews on the Cham−Evans−Lam coupling, see: (a) Qiao, J.
X.; Lam, P. Y. S. Synthesis 2011, 2011, 829. (b) Qiao, J. X.; Lam, P. Y.
S. Recent advances in Chan-Lam coupling reaction: Copper-promoted
C-heteroatom bond cross-coupling reactions with boronic acids and
derivatives. In Boronic Acids, 2nd ed.; Hall, D. G., Ed.; Wiley-VCH:
Weinheim, Germany, 2011; Vol. 1, p 315. (c) Sanjeeva Rao, K.; Wu, T.
− S. Tetrahedron 2012, 68, 7735. See also: (d) Yu, X.-Q.; Yamamoto,
Y.; Miyaura, N. Chem. - Asian J. 2008, 3, 1517.
(7) Aryl boronic acids bearing electron-withdrawing substituents are
often reluctant substrates for the Chan−Evans−Lam synthesis or
diarylamines. See: (a) Antilla, J. C.; Buchwald, S. L. Org. Lett. 2001, 3,
2077. (b) Vantourout, J. C.; Law, R. P.; Isidro-Llobet, A.; Atkinson, S.
J.; Watson, A. J. B. J. Org. Chem. 2016, 81, 3942. (c) Yoo, W. − J.;
Tsukamoto, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2015, 54, 6587.
(8) (a) Ruiz-Castillo, P.; Blackmond, D. G.; Buchwald, S. L. J. Am.
Chem. Soc. 2015, 137, 3085. (b) Costil, R.; Dale, H. J. A.; Fey, N.;
Whitcombe, G.; Matlock, J. V.; Clayden, J. Angew. Chem., Int. Ed. 2017,
56, 12533.
(9) For other recent transition-metal-catalyzed transformations
leading to diarylamines, see: (a) Shin, K.; Kim, H.; Chang, S. Acc.
Chem. Res. 2015, 48, 1040. (C−H amination with azides).
(b) Aksenov, A. V.; Aksenov, N. A.; Orazova, N. A.; Aksenov, D.
A.; Dmitriev, M. V.; Rubin, M. RSC Adv. 2015, 5, 84849. (2-fold C−H
functionalization of electron-rich arenes). (c) Corcoran, E. B.; Pirnot,
M. T.; Lin, S.; Dreher, S. D.; DiRocco, D. A.; Davies, I. W.; Buchwald,
S. L.; MacMillan, D. W. C. Science 2016, 353, 279. (photoredox
catalysis). (d) Gui, J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.;
Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt,
M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Science 2015, 348,
886. (radical additions). (e) Taniguchi, K.; Jin, X.; Yamaguchi, K.;
Nozaki, K.; Mizuno, N. Chem. Sci. 2017, 8, 2131. (dehydrogenative
aromatization). (f) Koizumi, Y.; Taniguchi, K.; Jin, X.; Yamaguchi, K.;
Nozaki, K.; Mizuno, N. Chem. Commun. 2017, 53, 10827
(dehydrogenative aromatization)..
scalable (10 g), and the reaction products are recovered by
simple filtration without the need for separation by
chromatography.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Synthesis of starting materials, optimization of reaction
conditions between 1a and 2a, full experimental details,
characterization data, and copies of NMR spectra (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
́
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by Project CTQ2014-52213-R from
the Spanish government (MICINN).
■
REFERENCES
■
(1) See for example: (a) Welch, C. J.; Albaneze-Walker, J.; Leonard,
W. R.; Biba, M.; DaSilva, J.; Henderson, D.; Laing, B.; Mathre, D. J.;
Spencer, S.; Bu, X.; Wang, T. Org. Process Res. Dev. 2005, 9, 198.
(b) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.
(2) See for example: (a) Rappoport, Z. In The Chemistry of Anilines;
John Wiley & Sons: New York, 2007. (b) Ricci, A. In Amino Group
Chemistry: From Synthesis to the Life Sciences; John Wiley & Sons: New
York, 2008. (c) Wang, X. − F.; Tian, X. T.; Ohkoshi, E.; Qin, B.; Liu,
Y. − N.; Wu, P. C.; Hour, M. J.; Hung, H. Y.; Qian, Q.; Huang, R.;
Bastow, K. F.; Janzen, W. P.; Jin, J.; Morris-Natschke, S. L.; Lee, K. H.;
Xie, L. Bioorg. Med. Chem. Lett. 2012, 22, 6224. (d) Soussi, M. A.;
Provot, O.; Bernadat, G.; Bignon, J.; Wdzieczak-Bakala, J.; Desravines,
D.; Dubois, J.; Brion, J. − D.; Messaoudi, S.; Alami, M. Eur. J. Med.
Chem. 2014, 78, 178. (e) Ingold, K. U.; Pratt, D. A. Chem. Rev. 2014,
114, 9022. (f) O'Reilly, M. E.; Veige, A. S. Chem. Soc. Rev. 2014, 43,
6325. (g) Valgimigli, L.; Pratt, D. A. Acc. Chem. Res. 2015, 48, 966.
(h) Ohta, K.; Chiba, Y.; Kaise, A.; Endo, Y. Bioorg. Med. Chem. 2015,
23, 861. (i) Chu, J. C. K.; Dalton, D. M.; Rovis, T. J. J. Am. Chem. Soc.
(10) See for example: (a) Sapountzis, I.; Knochel, P. J. Am. Chem.
Soc. 2002, 124, 9390. (arylmagnesium compounds and nitroarenes).
(b) Ricci, A.; Fochi, M. Angew. Chem., Int. Ed. 2003, 42, 1444.
(arylmagnesium compounds and nitroarenes). (c) Sapountzis, I.;
Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 897. (arylmagnesium
compounds and arylazo tosylates). (d) Ciganek, E. Org. React. 2008,
72, 1. (electrophilic amination of carbanions, enolates, and their
surrogates). (e) Yadav, J. S.; Subba Reddy, B. V.; Borkar, P.; Reddy, P.
J. Tetrahedron Lett. 2009, 50, 6642. (cuprates and azides).
(f) Daskapan, T. ARKIVOC 2011, 5, 230. (electrophilic amination
of organomagnesium, -zinc, -copper, and -lithium reagents). (g) Yan,
X.; Yang, X.; Xi, C. Catal. Sci. Technol. 2014, 4, 4169. (Cu-catalyzed
electrophilic amination). (h) Kattamuri, P. V.; Yin, J.; Siriwongsup, S.;
Kwon, D. − Y.; Ess, D. H.; Li, Q.; Li, G.; Yousufuddin, M.;
Richardson, P. F.; Sutton, S. C.; Kurti, L. J. Am. Chem. Soc. 2017, 139,
̈
11184. (single or double addition of C-nucleophiles to ketomalonate-
derived imines and oximes). (i) Chen, Y. − H.; Graβl, S.; Knochel, P.
Angew. Chem., Int. Ed. 2018, 57, 1108 (co-catalyzed amination of
(hetero)arylzinc pivalates with N-hydroxylamine benzoates)..
(11) (a) Bosch, E.; Kochi, J. K. J. Org. Chem. 1994, 59, 5573.
(b) Gowenlock, B. G.; Richter-Addo, G. B. Chem. Rev. 2004, 104,
2015, 137, 4445. (j) Kurti, L. Science 2015, 348, 863. (k) Vardanyan,
R.; Hruby, V. In Synthesis of Best-Seller Drugs; Academic Press: Boston,
MA, 2016; p 15, and references cited therein..
̈
(3) Monnier, F.; Taillefer, M. Top. Organomet. Chem. 2013, 46, 173.
(4) See for example: (a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett
2003, 2428. (b) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev.
2008, 108, 3054. (c) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.;
McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525. (d) Okano, K.;
Tokuyama, H.; Fukuyama, T. Chem. Commun. 2014, 50, 13650.
(e) Jiang, Y.; Ma, D. In Copper-Mediated Cross-Coupling Reactions,
Evano, G., Blanchard, N., Eds.; John Wiley & Sons: Hoboken, NJ,
2014.
3315. (c) Priewisch, B.; Ruck-Braun, K. J. Org. Chem. 2005, 70, 2350.
̈
(d) Nishiwaki, N. In Comprehensive Organic Synthesis, 2nd ed.;
Knochel, P., Molander, G. A., Eds.; Elsevier: Amsterdam, 2014, 6, 100.
(e) Prakash, G. K. S.; Gurung, L.; Schmid, P. C.; Wang, F.; Thomas, T.
E.; Panja, C.; Mathew, T.; Olah, G. A. Tetrahedron Lett. 2014, 55,
1975.
(12) Molander, G.; Cavalcanti, L. N. J. Org. Chem. 2012, 77, 4402.
This was the method of choice for the synthesis of many of the starting
(5) See for example: (a) Schlummer, B.; Scholz, U. Adv. Synth. Catal.
2004, 346, 1599. (b) Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz,
U. Adv. Synth. Catal. 2006, 348, 23. (c) Surry, D. S.; Buchwald, S. L. J.
Am. Chem. Soc. 2007, 129, 10354. (d) Surry, D. S.; Buchwald, S. L.
Chem. Sci. 2011, 2, 27. (e) Lundgren, R.; Stradiotto, M. Aldrichimica
Acta 2012, 45, 59. (f) Guram, A. S. Org. Process Res. Dev. 2016, 20,
1754. See also: (g) Inoue, F.; Kashihara, M.; Yadav, M. R.; Nakao, Y.
Angew. Chem., Int. Ed. 2017, 56, 13307.
(13) (a) Ingold, C. K. J. J. Chem. Soc., Trans. 1925, 127, 513. (b) Le
́
Fevre, R. J. W. J. Chem. Soc. 1931, 0, 810. (c) Robertson, P. W.;
Hitchings, T. R.; Will, G. M. J. Chem. Soc. 1950, 808. (d) Lipilin, D. L.;
Churakov, A. M.; Ioffe, S. L.; Strelenko, Y. A.; Tartakovsky, V. A. Eur.
J. Org. Chem. 1999, 1999, 29. (e) Gornostaev, L. M.; Bocharova, E. A.;
D
Org. Lett. XXXX, XXX, XXX−XXX