Table 1. Optimization of the Synthesis of 5a from 3a
Table 2. Pd(OAc)2-Catalyzed Cyanation of Iodide 4a
entrya
ligandb
base
time (h)
yield (%)c
entrya
ligandb
PPh3
BINAP
DPEphos
dppf
PPh3
dppb
dppe
dppf
additive
solvent
yield (%)c
1
2
3
4
5
6
7
8
PPh3
BINAP
DPEphos
dppe
dppp
dppb
dppf
dppf
dppf
dppf
dppf
none
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
K2CO3
K3PO4
K3PO4
none
24
24
24
24
24
24
2
2
2
2
24
trace
4
27
6
11
10
76
91
94
96
0
1
2
3
4
5
6
7
8
CuI
CuI
CuI
CuI
-
-
-
-
-
THF
THF
THF
THF
THF
THF
THF
THF
THF
dioxane
0
0
0
0
trace
16
24
19
60
86
9
9
10
DPEphos
DPEphos
10d
11
12
-
a Reaction conditions: 4a (1 mmol), Pd(OAc)2 (0.05 mmol), ligand (0.1
mmol), KCN (1.2 mmol), additive (0.1 mmol), solvent (4 mL), reflux, 24 h.
b See Table 1. c Isolated yield based on 4a.
K3PO4
24
0
a Reaction conditions: 3a (0.2 mmol), Pd(OAc)2 (0.02 mmol), ligand
(0.04 mmol), base (0.4 mmol), dioxane (2 mL), reflux. b BINAP: 2,2′-
bis(diphenylphosphino)-1,1′-binaphthyl. DPEphos: bis[(2-diphenylphos-
phino)phenyl]ether. dppe: 1,2-bis(diphenylphosphino)ethane. dppp: 1,3-
bis(diphenylphosphino)propane. dppb: 1,4-bis(diphenylphosphino)butane.
dppf: 1,1′-bis(diphenylphosphino)ferrocene. c Isolated yield based on 3a.
d 5 mol % of Pd(OAc)2 and 10 mol % of dppf were used.
undergo further transition-metal-catalyzed intramolecular
N-arylation with an aryl halide to allow the one-step
generation of the pyrroloquinazolinone skeleton (the C and
D rings of luotonin A). To explore this possibility, 2-bromo-
N-(2-cyanobenzyl)benzamide (3a) was used as the model
substrate, which could be synthesized in 55% yield by the
cyanation of N-(2-iodobenzyl)-2-bromobenzamide (4a) with
KCN under the catalysis of Pd(PPh3)4/CuI according to the
literature method9 (also vide infra). A typical experimental
procedure10 for the Sonogashira coupling was initially
applied to the cyclization of 3a: 10 mol % of Pd(OAc)2, 20
mol % of PPh3, and 200 mol % of Cs2CO3 in refluxing
dioxane. After 24 h, the expected product 5a was observed
in only a trace amount, while most of the starting material
remained unchanged (entry 1, Table 1). Switching PPh3 to
a bidentate phosphine ligand resulted in an increased yield
of 5a (entries 2-7, Table 1). To our delight, with the use of
1,1′-bis(diphenylphosphino)ferrocene (dppf) as the ligand,
5a was obtained in 76% yield within a much shorter period
of time (entry 7, Table 1). We next examined the bases.
K2CO3 or K3PO4 showed a better performance than Cs2CO3
(entries 7-9, Table 1). Finally, the combination of K3PO4
(200 mol %), Pd(OAc)2 (5 mol %), and dppf (10 mol %)
allowed the formation of 5a in almost quantitative yield
(entry 10, Table 1). As a comparison, no reaction occurred
isonitriles, featuring the one-step construction of the B and
C rings.5b However, their method required the use of highly
toxic bis(trimethyltin) as the initiator. Other methods typically
suffered from either the low efficiency or the lack of
generality.4-7 Herein we report that the palladium-catalyzed
sequential cyanation/N-addition/N-arylation of N-((2-bro-
moquinolin-3-yl)methyl)-2-bromobenzamides allows the con-
venient and rapid assembly of the luotonin A skeleton in a
one-pot procedure.
We recently reported the TMSOTf/Et3N-triggered in-
tramolecular formal [4 + 2] cycloaddition of nitriles with
R,ꢀ-unsaturated amides or ꢀ-ketoamides leading to the
synthesis of luotonin A derivatives with a saturated E ring.8
However, analogues with an aromatic E ring cannot be
accessed by this method. We envisioned that the intramo-
lecular nucleophilic N-addition of an amide to a Ct N bond
would generate the imidamide intermediate, which might
(5) For the latest examples of the synthesis of luotonin A, see: (a)
Bowman, W. R.; Cloonan, M. O.; Fletcher, A. J.; Stein, T. Org. Biomol.
Chem. 2005, 3, 1460. (b) Tangirala, R.; Antony, S.; Agama, K.; Pommier,
Y.; Curran, D. P. Synlett 2005, 2843. (c) Servais, A.; Azzouz, M.; Lopes,
D.; Courillon, C.; Malacria, M. Angew. Chem., Int. Ed. 2007, 46, 576. (d)
Zhou, H.-B.; Liu, G.-S.; Yao, Z.-J. J. Org. Chem. 2007, 72, 6270.
(6) (a) Ma, Z.; Hano, Y.; Nomura, T.; Chen, Y. Bioorg. Med. Chem.
Lett. 2004, 14, 1193. (b) Cagir, A.; Jones, S. H.; Eisenhauer, B. M.; Gao,
R.; Hecht, S. M. Bioorg. Med. Chem. Lett. 2004, 14, 2051. (c) Cagir, A.;
Eisenhauer, B. M.; Gao, R.; Thomas, S. J.; Hecht, S. M. Bioorg. Med. Chem.
2004, 12, 6287. (d) Lee, E. S.; Park, J. G.; Kim, S. I.; Jahng, Y. Heterocycles
2006, 68, 151.
(9) Anderson, B. A.; Bell, E. C.; Ginah, F. O.; Harn, N. K.; Pagh, L. M.;
Wepsiec, J. P. J. Org. Chem. 1998, 63, 8224.
(10) Chen, Q.; Li, C. Organometallics 2007, 26, 223.
(11) For reviews on palladium-catalyzed N-arylation, see: (a) Muci,
A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131. (b) Hartwig,
J. F. In Handbook of Organopalladium Chemistry for Organic Synthesis;
Negichi, E.-i., Ed.; Wiley: New York, 2002; Vol. 1, p 1051. (c) Littke,
A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176. (d) Prim, D.;
Campagne, J. M.; Joseph, D.; Andrioletti, B. Tetrahedron 2002, 58, 2041.
(e) Yang, B. Y.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125. (f)
Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res.
1998, 31, 805. (g) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.
(h) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852.
(7) (a) Cheng, K.; Rahier, N. J.; Eisenhauer, B. M.; Thomas, S. J.; Gao,
R.; Hecht, S. M. J. Am. Chem. Soc. 2005, 127, 838. (b) Rahier, N. J.; Cheng,
K.; Gao, R.; Eisenhauer, B. M.; Hecht, S. M. Org. Lett. 2005, 7, 835. (c)
Elban, M. A.; Sun, W.; Eisenhauer, B. M.; Gao, R.; Hecht, S. M. Org.
Lett. 2006, 8, 3513.
(8) Liu, F.; Li, C. J. Org. Chem. 2009, 74, ASAP (DOI: 10.1021/
jo900907h).
Org. Lett., Vol. 11, No. 16, 2009
3583