3456
D. E. Phipps, P. D. Beer / Tetrahedron Letters 50 (2009) 3454–3457
δ+δ'
O
O
O
O
O
OEt
O
O
N
O
O HN
N
OEt
H
g
H
α
O
O
O
H
H
O
O
h
O
b
N
Cl
β
H
N
O
χ
O
H
OEt
OEt
a
c
f
N
HN
NH
O
O
O
O
d+d'
Figure 3. Partial 1H NMR spectra (500 MHz, 1:1 CDCl3:CD3OD, 293 K) of (a)
catenane 7b, and (b) 7b and 1 equiv of TBACl.
Table 1
Association constants (K11, Mꢀ1) of 7b with various anions
Aniona
K11
Clꢀ
2050
840
290
160
120
Brꢀ
Figure 2. Partial 1H NMR spectrum (500 MHz, CDCl3, 293 K) of 7a.
ꢀ
H2PO4
AcOꢀ
Fꢀ
volved in hydrogen bonding to the chloride template are signifi-
cantly moved upfield ( d = 0.79 ppm Hb, 0.88 ppm Hc) relative to
the macrocycle 5b. Simultaneously, the hydroquinone protons
Solvent 1:1 CDCl3/CD3OD, 293 K, errors <10%.
D
a
Anions introduced as tetrabutylammonium salts.
0
(Hd+d ) are observed to move upfield and split (
D
d = 0.5 and
0.78 ppm) indicating substantial
the nitro-substituted isophthalamide group. In addition, significant
downfield shifts of the upper-rim calixarene protons
p–p stacking interactions with
high degree of selectivity for chloride in competitive organic sol-
vent mixtures.
(Dd = 0.56 ppm Yf) are consistent with hydrogen-bonding interac-
tions to the nitro group of the thread.
Acknowledgments
Similar but opposing shifts of the thread protons downfield
We would like to thank the EPSRC and GE Healthcare, Amer-
sham for the provision of a CASE-supported studentship (D.E.P.).
(D
d = 1 ppm Hb, 1.74 ppm H ) accompanied by an upfield shift
v
0
and split of the hydroquinone protons (Hd+d ) further corroborate
the changes seen in the pseudorotaxane studies.
ESI-MS evidence for the formation of the catenane was obtained
via observation of a single molecular ion peak at m/z = 1924.7.
Removal of the chloride anion template from the [2]catenane
cavity was achieved via exchange with hexafluorophosphate upon
the addition of AgPF6 to 7a. Confirmation of successful anion ex-
change was obtained via 1H NMR and elemental analysis.
1H NMR anion titration studies of the catenane 7b were under-
taken in a 1:1 CDCl3/CD3OD solvent mixture. Both the para-pyrid-
inium (Hb) and para-nitro (Hb) protons of the catenane were
observed to shift significantly downfield upon addition of chloride
(Fig. 3) while by way of contrast, bromide, fluoride, acetate, and
dihydrogen phosphate anions produced only modest perturba-
tions, suggesting weaker binding.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of
Molecular Topology; Sauvage, J. P., Dietrich-Buchecker, C., Eds.; Wiley-VCH:
Weinheim, Germany, 1999.
2. Stoddart, J. F.; Colquhoun, H. M. Tetrahedron 2008, 64, 8231–8263.
3. Balzani, V.; Credi, A.; Venturi, M. Chem. Eur. J. 2002, 8, 5524–5532.
4. Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72–191.
5. Champin, B.; Mobian, P.; Sauvage, J. P. Chem. Soc. Rev. 2007, 36, 358–366.
6. Saha, S.; Stoddart, J. F. Chem. Soc. Rev. 2007, 36, 77–92.
7. Ng, K. Y.; Cowley, A. R.; Beer, P. D. Chem. Commun. 2006, 3676–3678.
8. Sambrook, M. R.; Beer, P. D.; Lankshear, M. D.; Ludlow, R. F.; Wisner, J. A. Org.
Biomol. Chem. 2006, 4, 1529–1538.
9. Bayly, S. R.; Gray, T. M.; Chmielewski, M. J.; Davis, J. J.; Beer, P. D. Chem.
Commun. 2007, 2234–2236.
10. Chmielewski, M. J.; Zhao, L. Y.; Brown, A.; Curiel, D.; Sambrook, M. R.;
Thompson, A. L.; Santos, S. M.; Felix, V.; Davis, J. J.; Beer, P. D. Chem. Commun.
2008, 3154–3156.
11. Huang, B. Q.; Santos, S. M.; Felix, V.; Beer, P. D. Chem. Commun. 2008, 4610–
4612.
12. Mandolini, L.; Ungaro, R. Calixarenes in Action; Imperial College Press: London,
2000.
13. Arduini, A.; Ferdani, R.; Pochini, A.; Secchi, A.; Ugozzoli, F. Angew. Chem., Int. Ed.
2000, 39, 3453–3456.
14. Arduini, A.; Calzavacca, F.; Pochini, A.; Secchi, A. Chem. Eur. J. 2003, 9, 793–799.
15. Credi, A.; Dumas, S.; Silvi, S.; Venturi, M.; Arduini, A.; Pochini, A.; Secchi, A. J.
Org. Chem. 2004, 69, 5881–5887.
Job plot and WinEQNMR36 analysis of the titration data (see
Supplementary data) enabled association constants for 1:1 com-
plexes to be determined.
Table 1 shows that the catenane strongly and selectively binds
chloride in preference to the other anions tested. This observation
suggests that the unique interlocked host cavity of catenane 7b is
of complementary size and shape for the chloride template. Pre-
sumably the larger bromide and basic oxoanions are unable to be
completely encapsulated by the catenane binding pocket.
In conclusion, a new upper-rim functionalized calix[4]arene
macrobicycle has been synthesized and used in the chloride
anion-templated preparation of a novel [2]catenane. After halide
anion template removal, the resulting catenane host exhibits a