Akhigbe et al.
SCHEME 1. Synthesis of Morpholinochlorins13,14
We report here a method toward the synthesis and isolation
of free base secochlorin bisaldehyde 2H2. Furthermore, we
introduce an intramolecular Cannizzaro reaction of 2H2. This
new synthetic methodology generates known monomeric and a
new dimeric oxazolochlorins, pyrrole-modified porphyrins in
which one of the pyrroles was formally replaced by an oxazole
moiety.
Results and Discussion
Synthesis of Free Base meso-Tetraphenylsecochlorin Bis-
aldehyde (2H2). We previously explored the in situ prepara-
tion14 and reactivity17 of 2H2 under acidic reaction conditions
and realized its high reactivity. We therefore decided to test its
formation and reactivity using Lewis and Brønsted basic reaction
conditions. Thus, reaction of the purple, polar (Rf ) 0.12,
silica-CH2Cl2) diolchlorin 3H2 in THF containing 1-2 vol %
Et3N with IO4-, heterogenized onto silica gel, converts it in
essentially quantitative yields into a brown, nonpolar pigment
(Rf ) 0.61, silica-CH2Cl2) (Scheme 2).
Column chromatography (silica gel, CH2Cl2-0.1% Et3N)
allows the isolation of a reactive compound with the spectro-
scopic properties that characterize it as bisaldehyde 2H2.
Notably, its nonchlorin-like UV-vis spectrum displays a split
Soret band and broad side bands that also have been observed
to be diagnostic features for the Ni(II) complex of secochlorin
bisaldehydes (2Ni) and related compounds (Figure 1).15,16 The
NMR spectra of 2H2 reflect its 2-fold symmetry and show the
signals for an aldehyde group (δ ) 9.64 ppm for CHO and 188
ppm for CHO, respectively) that is also evident in its IR
spectrum (neat, νCdO ) 1675 cm-1). In solution, particularly in
acidic and/or wet solvents or on silica gel, this bisaldehyde tends
to decompose within several hours.22 Evaporated to dryness and
kept in a freezer at -18 °C, 2H2 is stable over several months.
Filtration of the crude reaction mixture to remove the oxidant
(with or without being followed by a removal of the solvent by
rotary evaporation) produces suitably pure secochlorin bisal-
dehyde 2H2 for subsequent transformations. For instance,
morpholinochlorin 1H2 is formed upon reaction with an alcohol
and catalytic amounts of acid (HCl fumes).14
Crossley,9 Bonnett,10 Pandey,11 Zaleski,12 and us13-20 point
toward the wide potential of a controlled, stepwise transforma-
tion of a porphyrinic ꢀ,ꢀ′-bond.
We demonstrated the synthesis of meso-tetraphenylmorpholi-
nochlorin (1Ni) and noticed a profound metal-templating
effect.13,14 While the Pb(OAc)4- or IO4--mediated oxidations
of [meso-tetraaryl-2,3-diolchlorinato]Ni(II) generate the stable
and crystallographically characterized bisaldehyde 2Ni,15,16 and
in a subsequent reaction 1Ni,13 the high reactivity of free base
2H2 allowed only its in situ preparation, whereby it can be
trapped in high yields as a stable double-acetal, free base
morpholinochlorin 1H2 (Scheme 1).14
Another area of interest in current porphyrin research is the
synthesis and photophysical characterization of porphyrinoid
dimers and oligomers. Typically, two or more tetrapyrrolic
macrocycles, such as porphyrins, chlorins, or corroles, are linked
directly or via a spacer of various lengths.21 The study of the
energy-transfer processes in these models promises to lead to a
better understanding of photosynthetic pigment assemblies.
(7) Gouterman, M.; Hall, R. J.; Khalil, G.-E.; Martin, P. C.; Shankland, E. G.;
Cerny, R. L. J. Am. Chem. Soc. 1989, 111, 3702–3707.
(8) (a) Callot, H. Bull. Chem. Soc. Chim. Fr. 1972, 11, 4387–4391. (b) Callot,
H. J.; Schaeffer, E. Tetrahedron 1978, 34, 2295–2300. (c) Callot, H. J. Dalton
Trans. 2008, 6346–6357.
(9) Crossley, M. J.; King, L. G. J. Chem. Soc., Chem. Commun. 1984, 920–
922.
(10) (a) Adams, K. R.; Bonnett, R.; Burke, P. J.; Salgado, A.; Valle´s, M. A.
J. Chem. Soc., Chem. Commun. 1993, 1860–1861. (b) Adams, K. R.; Bonnett,
R.; Burke, P. J.; Salgado, A.; Valle´s, M. A. J. Chem. Soc., Perkin Trans. 1
1997, 1769–1772.
(11) Kozyrev, A. N.; Alderfer, J. L.; Dougherty, T. J.; Pandey, R. K. Angew.
Chem., Int. Ed. 1999, 38, 126–128.
(12) (a) Ko¨pke, T.; Pink, M.; Zaleski, J. M. Org. Biomol. Chem. 2006, 4,
4059–4062. (b) Ko¨pke, T.; Pink, M.; Zaleski, J. M. Chem. Commun. 2006, 4940–
4942.
(13) Bru¨ckner, C.; Rettig, S. J.; Dolphin, D. J. Org. Chem. 1998, 63, 2094–
2098.
(14) McCarthy, J. R.; Jenkins, H. A.; Bru¨ckner, C. Org. Lett. 2003, 5, 19–
22.
(15) Bru¨ckner, C.; Sternberg, E. D.; MacAlpine, J. K.; Rettig, S. J.; Dolphin,
D. J. Am. Chem. Soc. 1999, 121, 2609–2610.
Cannizzaro Reaction of meso-Tetraphenylsecochlorin
Bisaldehyde (2H2). Aldehydes lacking R-hydrogens are sus-
ceptible to a Cannizzaro reaction, a Brønsted base-induced
disproportionation reaction of 2 equiv of, for instance, benzal-
dehyde, to generate 1 equiv each of benzyl alcohol and benzoic
acid.23 Bisaldehyde 2H2 could potentially undergo an intramo-
(22) The decomposition is often accompanied by the forming of a green,
polar (Rf ) 0.10, silica-CH2Cl2), and unstable compound. We tentatively
assigned it, based on its morpholinochlorin-like UV-vis spectrum and mass
(ESI+ HR-MS, 100% MeCN, m/z found 665.2548, corresponding to C44H33N4O3,
expected mass 665.2553), as the hydrate structure 2H2 · H2O. Correspondingly,
it can be converted by addition of EtOH, under acid catalysis, in high yield to
morpholinochlorin 1H2. However, attempts to isolate and fully characterize this
compound failed.
(16) Bru¨ckner, C.; Hyland, M. A.; Sternberg, E. D.; MacAlpine, J.; Rettig,
S. J.; Patrick, B. O.; Dolphin, D. Inorg. Chim. Acta 2005, 358, 2943–2953.
(17) McCarthy, J. R.; Hyland, M. A.; Bru¨ckner, C. Org. Biomol. Chem. 2004,
2, 1484–1491.
(18) Daniell, H. W.; Bru¨ckner, C. Angew. Chem., Int. Ed. 2004, 43, 1688–
1691.
(19) Lara, K. K.; Rinaldo, C. K.; Bru¨ckner, C. Tetrahedron 2005, 61, 2529–
2539.
(20) Ryppa, C.; Niedzwiedzki, D.; Morozowich, N. L.; Rapole, S.; Zeller,
M.; Frank, H. A.; Bru¨ckner, C. Chem.sEur. J. 2009, 15, 5749-5762.
(21) For recent representative examples, see: (a) Matano, Y.; Matsumoto,
K.; Nakao, Y.; Uno, H.; Sakaki, S.; Imahori, H. J. Am. Chem. Soc. 2008, 130,
4588–4589. (b) Hisaki, I.; Hiroto, S.; Kim, K. S.; Noh, S. B.; Kim, D.; Shinokubo,
H.; Osuka, A. Angew. Chem., Int. Ed. 2007, 46, 5125–5128. (c) Kelley, R. F.;
Lee, S. J.; Wilson, T. M.; Nakamura, Y.; Tiede, D. M.; Osuka, A.; Hupp, J. T.;
Wasielewski, M. R. J. Am. Chem. Soc. 2008, 130, 4277–4284. (d) Esdaile, L. J.;
Jensen, P.; McMurtrie, J. C.; Arnold, D. P. Angew. Chem., Int. Ed. 2007, 46,
2090–2093. (e) Lysenko, A. B.; Thamyongkit, P.; Schmidt, I.; Diers, J. R.;
Bocian, D. F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2006, 10, 22–32.
(f) Song, H.; Kirmaier, C.; Taniguchi, M.; Diers, J. R.; Bocian, D. F.; Lindsey,
J. S.; Holten, D. J. Am. Chem. Soc. 2008, 130, 15636–15648, and references
therein.
(23) (a) Cannizzaro, S. Liebigs Ann. Chem. 1853, 88, 129–130. Intramolecular
Cannizzaro reactions of aromatic Vic-bisaldehydes: (b) McDonald, R. S.; Sibley,
C. E. Can. J. Chem. 1981, 59, 1061–1067. (c) Bowden, K.; El-Kaissi, F. A.;
Ranson, R. J. J. Chem. Soc., Perkin Trans. 2 1990, 2089–2092. (d) Anvia, F.;
Bowden, K. J. Chem. Soc., Perkin Trans. 2 1990, 2093–2098.
4928 J. Org. Chem. Vol. 74, No. 14, 2009