Yamanaka and Fujii
JOCArticle
material separations, sensors, drug delivery systems, cosmetics,
etc. One general method for supramolecular gel formation is the
thermal dissolution of LMWG into a solvent and cooling the
mixture. Ultrasound irradiation-induced supramolecular gel
formations have also been reported lately.15 Gel formation by
the cooperative work of two chemicals, i.e., two-component gels,
is another topic of LMWG research.16-18 Ideas of metal-ligand
coordination or host-guest chemistry were adopted in these
two-component gels. Generally, an LMWG gelates solvents
under one specific condition. Multifunctional LMWGs, for
instance, an LMWG gelated by different stimuli depending on
the solvents, are hardly known. Recently, we have developed
tris-urea LMWGs that enable reversible sol-gel phase transi-
tions in response to chemical stimuli.19 Our tris-urea gelator has
a highly symmetrical and readily divisible structure; therefore, it
is easy to synthesize various derivatives using similar proce-
dures.20 In the course of this study, we designed C3-symmetrical
tris-urea 1 as a derivative. Synthesized tris-urea 1 acted as a
talented LMWG beyond expectations. In this paper, we would
like to report that a tris-urea LMWG 1 gels four chloroalkanes
in different ways, i.e., by thermal dissolution and cooling or
ultrasound irradiation in the presence or absence of metal salt.
SCHEME 1. Synthesis of Tris-urea 1
Results and Discussion
Tris-urea 1 was synthesized in three steps from phloro-
glucin (Scheme 1). Nucleophilic aromatic substitution of
(11) (a) Kim, H.-J.; Lee, J.-H.; Lee, M. Angew. Chem., Int. Ed. 2005, 44,
5810–5814. (b) Stanley, C. E.; Clarke, N.; Anderson, K. M.; Elder, J. A.;
Lenthall, J. T.; Steed, J. W. Chem. Commun. 2006, 3199–3201. (c) Maeda, H.;
Haketa, Y.; Nakanishi, T. J. Am. Chem. Soc. 2007, 129, 13661–13674. (d)
Kubo, Y.; Yoshizumi, W.; Minami, T. Chem. Lett. 2008, 1238–1239.
(12) (a) Kawano, S.-i.; Fujita, N.; Shinkai, S. J. Am. Chem. Soc. 2004,
126, 8592–8593. (b) Kawano, S.-i.; Fujita, N.; Shinkai, S. Chem.;Eur. J.
2005, 11, 4735–4742. (c) Wang, C.; Zhang, D.; Zhu, D. J. Am. Chem. Soc.
2005, 127, 16372–16373.
(13) (a) Khatua, D.; Maiti, R.; Dey, J. Chem. Commun. 2006, 4903–4905.
(b) Hwang, I.; Jeon, W. S.; Kim, H.-J.; Kim, D.; Kim, H.; Selvapalam, N.;
Fujita, N.; Shinkai, S.; Kim, K. Angew. Chem., Int. Ed. 2007, 46, 210–213.
(14) (a) Yang, Z.; Xu, B. Chem. Commun. 2004, 2424–2425. (b) Yang, Z.;
Liang, G.; Wang, L.; Xu, B. J. Am. Chem. Soc. 2006, 128, 3038–3043.
(15) (a) Naota, T.; Koori, H. J. Am. Chem. Soc. 2005, 127, 9324–9325. (b)
Isozaki, K.; Takaya, H.; Naota, T. Angew. Chem., Int. Ed. 2007, 46, 2855–
phloroglucin and 4-fluoronitrobenzene gave tris-nitro com-
pound (2). Nitro groups of 2 were reduced to amino groups
by hydrogen in the presence of palladium on carbon. Tris-
amine 3 was reacted with an excess amount of octylisocya-
nate, and the desired tris-urea 1 was obtained as a white solid.
Gelation experiments using 1 were accomplished in four
chloroalkanes: CH2Cl2, CHCl3, 1,1,2-trichloroethane, and
1,1,2,2-tetrachloroethane. Gel formation was evaluated by
the inverted tube test. A mixture remaining at the top of an
inverted test tube was defined as a gel. The term “partial gel”
was used when some part of a mixture remained at the top of
the inverted test tube and some flowed down the tube slowly
or quickly.
ꢀ
2857. (c) Baddeley, C.; Yan, Z.; King, G.; Woodward, P. M.; Badjic, J. D. J.
Org. Chem. 2007, 72, 7270–7278. (d) Bardelang, D.; Camerel, F.; Margeson,
J. C.; Leek, D. M.; Schmutz, M.; Zaman, M. B.; Yu, K.; Soldatov, D. V.;
Ziessel, R.; Ratcliffe, C. I.; Ripmeester, J. A. J. Am. Chem. Soc. 2008, 130,
3313–3315.
(16) (a) Hirst, A. R.; Smith, D. K. Chem.;Eur. J. 2005, 11, 5496–5508.
(b) Fages, F. Angew. Chem., Int. Ed. 2006, 45, 1680–1682.
(17) (a) Inoue, K.; Ono, Y.; Kanekiyo, Y.; Ishi-i, T.; Yoshihara, K.;
Shinkai, S. J. Org. Chem. 1999, 64, 2933–2937. (b) Kawano, S.-i.; Fujita, N.;
Shinkai, S. Chem. Commun. 2003, 1352–1353. (c) Hirst, A. R.; Smith, D. K.;
Feiters, M. C.; Geurts, H. P. M.; Wright, A. C. J. Am. Chem. Soc. 2003, 125,
9010–9011. (d) Shirakawa, M.; Fujita, N.; Shinkai, S. J. Am. Chem. Soc.
2003, 125, 9902–9903. (e) Bag, B. G.; Maity, G. C.; Dinda, S. K. Org. Lett.
2006, 8, 5457–5460. (f) Lee, H. Y.; Nam, S. R.; Hong, J.-I. J. Am. Chem. Soc.
2007, 129, 1040–1041. (g) Yagai, S.; Monma, Y.; Kawauchi, N.; Karatsu, T.;
Kitamura, A. Org. Lett. 2007, 9, 1137–1140. (h) Anderson, K. M.; Day, G.
M.; Paterson, M. J.; Byrne, P.; Clarke, N.; Steed, J. W. Angew. Chem., Int.
Ed. 2008, 47, 1058–1062.
(18) (a) Terech, P.; Gebel, G.; Ramasseul, R. Langmuir 1996, 12, 4321–
4323. (b) Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.;
Hanabusa, K.; Shirai, H.; Kobayashi, N. Langmuir 2000, 16, 2078–2082.
(c) Hanabusa, K.; Maesaka, Y.; Suzuki, M.; Kimura, M.; Shirai, H. Chem.
Lett. 2000, 1168–1169. (d) Beck, J. B.; Rowan, S. J. J. Am. Chem. Soc. 2003,
125, 13922–13923. (e) Kuroiwa, K.; Shibata, T.; Takada, A.; Nemoto, N.;
Kimizuka, N. J. Am. Chem. Soc. 2004, 126, 2016–2021. (f) Kishimura, A.;
Yamashita, T.; Aida, T. J. Am. Chem. Soc. 2005, 127, 179–183. (g) Shirakawa,
M.; Fujita, N.; Tani, T.; Kaneko, K.; Ojima, M.; Fujii, A.; Ozaki, M.;
Shinkai, S. Chem.;Eur. J. 2007, 13, 4155–4162.
Thermal treatment and cooling of a mixture of 1 and
chloroalkane solvents were performed (Table 1, Figure 1).
Mixtures of tris-urea 1 and CH2Cl2 or CHCl3 in plugged
test tubes were heated up to 70 °C; however, insoluble
suspensions remained unchanged. Homogeneous solu-
tions were obtained by heating mixtures of 1 and 1,1,
2-trichloroethane or 1,1,2,2-tetrachloroethane in plugged
test tubes to 110 °C. A 1,1,2-trichloroethane solution
of 1 was converted into a white semitransparent gel by
cooling, and the critical gelation concentration (CGC) was
determined to be 10 mM. A 1,1,2,2-tetrachloroethane
solution of 1 gave only a partial gel even at higher concen-
trations (up to 25 mM). A scanning electron microscope
(SEM) image of a xerogel prepared by freeze-drying a 1,1,
2-trichloroethane gel with 1 showed intertwining nanofibers
(Figure 2a). Freeze-drying a sample of the gelous mixture
of 1 and 1,1,2,2-tetrachloroethane indicated micrometer-
sized fibrous aggregates (Figure 2b).
(19) Yamanaka, M.; Nakamura, T.; Nakagawa, T.; Itagaki, H. Tetra-
hedron Lett. 2007, 48, 8990–8993.
(20) Yamanaka, M.; Nakagawa, T.; Aoyama, R.; Nakamura, T. Tetra-
hedron 2008, 64, 11558–11567.
J. Org. Chem. Vol. 74, No. 15, 2009 5391