chiral imidazolidinones could, in the presence of Hantzsch
esters, catalyze the enantioselective reduction of a wide range
of ꢀ,ꢀ′-disubstituted R,ꢀ-unsaturated aldehydes in good yields
(up to 95%) and high enantioselectivities (up to 97% ee).
Concurrently, List et al.8 introduced the concept of asymmetric
counter anion directed catalysis (ACDC) by developing a highly
selective organocatalyst for the asymmetric reduction of enals
which consists of an achiral ammonium ion and a chiral phosphate
anion derived from 3,3′-bis(2,4,6-triisopropylphenyl)-1,1′-binaph-
thyl-2,2′-diyl hydrogen phosphate (TRIP). Thus, examples of both
ꢀ,ꢀ′-disubstituted enals were reduced in good yields (up to 90%)
and excellent enantioselectivities (up to 99% ee).
Interestingly, while these methods have been applied suc-
cessfully to a wide range of substrates, to our knowledge, there
has been no report of an enantioselective organocatalytic transfer
hydrogenation applied to ꢀ-azole R,ꢀ-unsaturated aldehydes of
type I (Scheme 1). As this motif is present in various natural
products of significant biological value, such as myxothiazole
Z,9 calyculin A,10 and ulapualide A (Figure 1),11 we were
particularly interested in investigating this key transformation
which would allow a straightforward access these molecules.
In this paper, we wish to report the results of our endeavor
which have led to the first examples of enantioselective
organocatalytic transfer hydrogenations applied to ꢀ-azole R,ꢀ-
unsaturated aldehydes (Scheme 1).
Figure 1. Structure of myxothiazole Z, calyculin A, and ulapualide A.
Scheme 1. Enantioselective Organocatalytic Transfer
Hydrogenation of ꢀ-Azole-Containing R,ꢀ-Unsaturated Aldehydes
This study initially began when synthesizing myxothiazole
Z, a secondary metabolite isolated from myxobacteria Myxo-
coccus fulVus,9 which displays interesting antifungal, antibacte-
rial, and anticancer properties.12,13 Our strategy for the
synthesis of myxothiazole Z was similar to the one we have
previously used to prepare two related natural products:
melithiazole C14 and cystothiazole A.15 Hence, we planned
to employ a cross-metathesis between a vinylthiazole16 and
a ꢀ-methoxy acrylate, and a Stille coupling which would
allow us to link the two thiazole rings together. Finally, an
enantioselective organocatalytic transfer hydrogenation was
conceived as a key step to control the stereogenic center at
the R-position of the thiazole ring.
(4) (a) Berkessel, A.; Gro¨ger, H. Asymmetric Organocatalysis: From
Biomimetic Concepts to Applications In Asymmetric Synthesis; Wiley-VCH:
Weinheim, Germany, 2007. (b) Dalko, P. I. EnantioselectiVe Organoca-
talysis: Reactions and Experimental Procedures; Wiley-VCH: Weinheim,
Germany, 2005. (c) Jaroch, S.; Weinmann, H.; Zeitler, K. ChemMedChem
2007, 9, 1261. (d) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004,
43, 5138. (e) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40,
3726. (f) List, B. Org. Biomol. Chem. 2005, 3, 719. (g) Gaunt, M. J.;
Johansson, C. C. C.; McNally, A.; Vo, N. T. Drug DiscoVery Today 2007,
12, 8. (h) Adolfsson, H. Angew. Chem., Int. Ed. 2005, 44, 3340.
(5) (a) Dickinson, F.; Dalziel, K. Nature 1967, 214, 31. (b) Findeis,
M. A.; Whitesides, G. M. Annu. Rep. Med. Chem. 1984, 19, 263. (c) Jones,
J. B. Tetrahedron 1986, 42, 3351. (d) Pollak, N.; Do¨lle, C.; Ziegler, M.
Biochem. J. 2007, 402, 205. (e) Alberts, B.; Bray, D.; Lewis, J.; Raff, M.;
Roberts, K. I.; Watson, J. D. Molecular Biology of the Cell, 3rd ed.; Garland:
New York & London, 2002.
With no precedent on such systems, a thorough investigation
of the reaction conditions was first undertaken on aldehyde 1.
The results are reported in Table 1.
As depicted, we began by screening two catalysts derived
from (S)-proline (3 and 4). The reactions were typically carried
out in CHCl3 at -35 °C using 20 mol % of chiral organocatalyst
in combination with 1.2 equiv of either tert-butyl or ethyl
Hantzsch ester 9 and 10, or the corresponding methyl ketone
11, while the selectivities were determined by supercritical fluid
chromatography (SFC) analysis after reduction of the aldehyde
into the corresponding alcohol with NaBH4.17
(6) (a) Hantzsch, A. Justus Liebigs Ann. Chem. 1882, 215, 1. (b) Meijer,
L. H. P.; Pandit, U. K. Tetrahedron 1985, 41, 467. (c) Stout, D. M.; Meyers,
A. I. Chem. ReV. 1982, 82, 223.
Our initial attempts using catalysts 3 and 4 resulted, unfor-
tunately, in inefficient and nonselective reductions (Table 1,
entries 1-3). In contrast, by switching to imidazolidinone-type
(7) (a) Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2005, 127, 32. (b) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2005, 127, 15051. (c) LeLais, G.; MacMillan,
D. W. C. Aldrichimica Acta 2006, 39, 79. (d) Ouellet, S. G.; Walji, A. M.;
MacMillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327.
(8) (a) Yang, J. W.; Hechavarria Fonseca, M. T.; List, B. Angew. Chem.,
Int. Ed. 2004, 43, 6660. (b) Yang, J. W.; Hechavarria Fonseca, M. T.;
Vingola, N.; List, B. Angew. Chem., Int. Ed. 2005, 44, 108. (c) Mayer, S.;
List, B. Angew. Chem., Int. Ed. 2006, 45, 4193.
(11) (a) Roesner, J. A.; Scheuer, P. J. J. Am. Chem. Soc. 1986, 108,
846. (b) Matsusunaga, S.; Fusetani, K.; Hashimoto, K.; Koseki, K.; Norma,
M. J. Am. Chem. Soc. 1986, 108, 847. (c) Allingham, J. S.; Tanaka, J.;
Marriot, G.; Rayment, I. Org. Lett. 2004, 6, 597. (d) Pattenden, G.; Ashweek,
N. J.; Baker-Glen, C. A. G.; Kempson, J.; Walker, G. M.; Yee, J. G. K.
Org. Biomol. Chem. 2008, 6, 1478.
(9) (a) Gerth, K.; Irschik, H.; Reichenbach, H.; Trowitzsch, W. J.
Antibiot. 1980, 33, 1474. (b) Trowitzsch, W.; Reifenstahl, G.; Wray, V.;
Gerth, K. J. Antibiot. 1980, 33, 1480. (c) Trowitzsch, W.; Ho¨fle, G.;
Sheldrick, W. S. Tetrahedron Lett. 1981, 22, 3829. (d) Kohl, W.; Witte,
B.; Kunze, B.; Wray, V.; Schomburg, D.; Reichenbach, H.; Ho¨fle, G. Liebigs
Ann. Chem. 1985, 2088. (e) Trowitzsch, W.; Wray, V.; Gerth, K.;
Reichenbach, H.; Ho¨fle, G. Liebigs Ann. Chem. 1986, 93. (f) Ahn, J.-W.;
Woo, S.-H.; Lee, C. O.; Cho, K.-Y.; Kim, B.-S. J. Nat. Prod. 1999, 62,
495. (g) Steinmetz, H.; Forche, E.; Reichenbach, H.; Ho¨fle, G. Tetrahedron
2000, 56, 1681.
(12) (a) Thierbach, G.; Reichenbach, H. Biochim. Biophys. Acta 1981,
638, 282. (b) Sasse, F.; Bo¨hlendorf, B.; Herrmann, M.; Kunze, B.; Forche,
E.; Steinmetz, H.; Ho¨fle, G.; Reichenbach, H. J. Antibiot. 1999, 52, 721.
(13) Martin, B. J.; Clough, J. M.; Pattenden, G.; Waldron, I. R.
Tetrahedron Lett. 1993, 34, 5151.
(14) Gebauer, J.; Arseniyadis, S.; Cossy, J. Org. Lett. 2007, 9, 3425.
(15) Gebauer, J.; Arseniyadis, S.; Cossy, J. Eur. J. Org. Chem. 2008,
2701.
(10) Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K.; Fujita, S.;
Furuya, T. J. Am. Chem. Soc. 1986, 108, 2780.
(16) Dash, J.; Arseniyadis, S.; Cossy, J. AdV. Synth. Catal. 2007, 152.
(17) See Supporting Information.
Org. Lett., Vol. 11, No. 13, 2009
2757