A. Dubey, P. Kumar / Tetrahedron Letters 50 (2009) 3425–3427
3427
O
O
H
H
R
Favorable
H
N
H
Os
O
apporach
H
O
O
Hindered
apporach
O
H
O
O
H
N
Os
O
O
H
R
B
A
OTBS
disfavored
favored
syn
R =
anti
13
Figure 2. Proposed transition states for the syn/anti selectivity observed during the TA reaction.
Kobayashi, E.; Motoski, K.; Yamaguchi, Y.; Uchida, T.; Fukushima, H.; Koezuka,
Y. Oncol. Res. 1995, 7, 529.
sine 14 following the same sequence of reactions as described for
12 (Scheme 1).The physical and spectroscopic data of 14 were in
accordance with those described in literature.12b
12. (a) Fernandes, R. A.; Kumar, P. Tetrahedron Lett. 2000, 41, 10309; (b) Fernandes,
R. A.; Kumar, P. Synthesis 2003, 1, 129; (c) Kumar, P.; Naidu, S. V. Tetrahedron
Lett. 2003, 44, 1035; (d) Azuma, H.; Tamagaki, S.; Ogino, K. J. Org. Chem. 2000,
65, 3538; (e) Abraham, E.; Brock, E. A.; Candela-Lena, J. I.; Davis, S. G.; Georgiou,
M.; Nicholson, R. L.; Perkins, J. H.; Roberts, P. M.; Russell, A. J.; Sanchej-
Fernandez, E. M.; Scott, A. D.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 1665.
and references cited therein.
13. (a) Donohoe, T. J.; Johnson, P. D.; Helliwell, M.; Keenan, M. Chem. Commun.
2001, 3, 401; (b) Donohoe, T. J.; Johnson, P. D.; Cowley, A.; Keenan, M. J. Am.
Chem. Soc. 2002, 124, 12934; (c) Donohoe, T. J.; Johnson, P. D.; Pye, R. J. Org.
Biomol. Chem. 2003, 1, 2025; (d) Donohoe, T. J.; Johnson, P. D.; Pye, R. J.;
Keenam, M. Org. Lett. 2004, 6, 2583; (e) Donohoe, T. J.; Carole, J. R.; William, G.;
Johannes, K.; Emile, R. Org. Lett. 2007, 7, 1725.
14. (a) Li, G.; Chang, H. T.; Sharpless, K. B. Angew. Chem., Int. Ed. 1996, 35, 451; (b)
Brien, P. O. Angew. Chem., Int. Ed. 1999, 38, 326. and references cited therein.
15. (a) Kandula, S. V.; Kumar, P. Tetrahedron Lett. 2003, 44, 6149; (b) Kumar, P.;
Naidu, S. V.; Gupta, P. J. Org. Chem. 2005, 70, 2843; (c) Kumar, P.; Naidu, S. V. J.
Org. Chem. 2005, 70, 4207; (d) Kumar, P.; Naidu, S. V. J. Org. Chem. 2006, 71,
3935; (e) Kumar, P.; Gupta, P.; Naidu, S. V. Chem. Eur. J. 2006, 12, 1397; (f)
Gupta, P.; Kumar, P. Eur. J. Org. Chem. 2008, 1195. and references cited therein.
16. (a) Fernandes, R. A.; Kumar, P. Eur. J. Org. Chem. 2000, 3447; (b) Kandula, S. V.;
Kumar, P. Tetrahedron Lett. 2003, 44, 1957; (c) Kondekar, N. B.; Subba Rao, K. V.;
Kumar, P. Tetrahedron Lett. 2004, 45, 5477; (d) Kumar, P.; Bodas, M. S. J. Org.
Chem. 2005, 70, 360; (e) Pandey, S. K.; Pandey, M.; Kumar, P. Tetrahedron Lett.
2008, 49, 2397. and references cited therein.
In conclusion, we have achieved a concise synthesis of both
L-arabino- and L-xylo-phytosphingosines using tethered amin-
ohydroxylation and Sharpless kinetic resolution as the key steps
and as a source of chirality. The tethered aminohydroxylation
was used to introduce the amino functionality in a highly diaste-
reoselective manner. The generality of the method shown has sig-
nificant potential of its further extension to the other isomers of
phytosphingosine and related analogues. Currently studies are in
progress to this direction.
Acknowledgments
A.D. thanks CSIR, New Delhi for the award of Senior Research
Fellowship. Financial support for funding of the project (Grant
No. SR/S1/OC-40/2003) from Department of Science & Technology,
New Delhi is gratefully acknowledged. This is NCL Communication
No. 6712.
17. Dubey, A.; Kandula, S. R. V.; Kumar, P. Synth. Commun. 2008, 38, 746.
18. Martin, V. S.; Woodard, S. S.; Katuski, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B.
J. Am. Chem. Soc. 1981, 103, 6237.
References and notes
19. Spectral data of 6: mp = 46 °C. ½a D25
ꢁ
+2.38 (c 1.0, CHCl3); 1H NMR (CDCl3,
1. (a) Hannum, Y. A. Sphingolipid-Mediated Signal Transduction; R.G. Landes
Company: Austin, 1997; (b) Merrill, A. H.; Sweeley, C. C.. In Biochemistry of
Lipids, Lipoproteins and Membranes; Vance, D. E., Vance, J., Eds.; Elsevier:
Amersterdam, 1996; Vol. 31, p 309; (c) Abbas, H. K.; Tanaka, T.; Duke, S. D.;
Porter, J. K.; Wray, E. M.; Hodges, L.; Session, A. E.; Wang, E.; Messill, A. H., Jr.;
Riley, R. J. Plant Physiol. 1994, 106, 1085; (d) Porcelli, S. A.; Moddlin, R. L. Annu.
Rev. Immunol. 1999, 17, 297; (e) Hanum, Y. A. Science 1996, 274, 1855; (f) Ariga,
T.; Jaruis, W. D.; Yu, R. K. J. Lipid Res. 1998, 39, 1; (g) Perry, D. K.; Hannum, Y. A.
Biochim. Biophys. Acta 1998, 1436, 233.
200 MHz):
d 0.89 (t, J = 6.1 Hz, 3H), 1.26 (m, 24H), 1.54 (m, 2H), 1.69
(br s, 1H), 4.11 (m, 1H), 5.08–5.26 (m, 2H), 5.78–5.95 (m, 1H); 13C
NMR (CDCl3, 50 MHz): 14.0, 22.6, 25.3, 25.7, 29.3, 29.6, 31.8, 32.6,
d
36.9, 62.6, 73.0, 114.2, 141.3; Anal. Calcd for C17H34O (254.45): C, 80.24;
H, 13.47. Found: C, 79.95; H, 13.73.
20. Spectral data of 7: ½a D25
ꢁ
ꢀ4.1 (c 1.0, CHCl3); 1H NMR (200 MHz, CDCl3): d 0.07 (s,
3H), 0.12 (s, 3H), 0.84–0.93 (m, 12H), 1.26 (s, 24 H), 1.49–1.53 (m, 2H), 2.55 (q,
J = 2.72, 5.12, 1H), 2.75–2.83 (m, 1H), 2.87–2.97 (m, 1H), 3.19–3.33 (m, 1H); 13C
NMR (50 MHz, CDCl3): d ꢀ4.9, ꢀ4.4, 14.0, 18.1, 22.6, 24.8, 25.2, 25.6, 25.7, 25.9,
29.3, 29.5, 29.6, 29.7, 31.9, 35.2, 44.7, 54.6, 71.2; Anal. Calcd for C23H48O2Si
(384.71): C, 71.81; H, 12.58. Found. C, 71.65; H, 12.73.
2. Hannun, Y. A.; Bell, R. M. Science 1989, 243, 500.
3. Okabe, K.; Keeman, R. W.; Schmidt, G. Biochem. Biophys. Res. Commun. 1968, 31,
137.
4. Takamastu, K.; Mikami, M.; Kikuchi, K.; Nozawa, S.; Iwamori, M. Biochim.
Biophys. Acta 1992, 1165, 177.
21. Alcaraz, L.; Harnett, J. J.; Mioskowski, C.; Martel, J. P.; Le Gall, T.; Dong-Soo,
Shin; Falck, J. R. Tetrahedron Lett. 1994, 35, 5449.
22. Spectral data of 10: ½a D25
ꢁ
+28.47 (c 1.3, CHCl3); 1H NMR (200 MHz, CDCl3): d 0.09
5. Barenholz, Y.; Gatt, S. Biochem. Biophys. Res. Commun. 1967, 27, 319.
6. (a) Wertz, P. W.; Miethke, M. C.; Long, S. A.; Stauss, J. S.; Dowing, D. T. J. Invest.
Dermatol. 1985, 84, 410; (b) Schmidt, R. R. In Liposome Dermatics; Braun-Falco,
O., Corting, H. C., Maibach, H. I., Eds.; Springer: Berlin, 1992; p 44.
7. (a) Karlsson, K. A.; Samuelsson, B. E.; Steen, G. O. Acta Chem. Scand. 1968, 22,
136; (b) Karlsson, K. A. Acta Chem. Scand. 1964, 18, 2395.
8. Vance, D. E.; Sweeley, C. C. J. Lipid Res. 1967, 8, 621.
9. Zellen, J. Monatsh. Chem. 1911, 32, 133.
10. (a) Oda, T. J. Pharma. Soc. Jpn. 1952, 72, 142; (b) Carter, H. E.; Hendrickson, H. S.
Biochemistry 1963, 2, 389.
11. (a) Dikson, R. C.; Nagiec, E. E.; Skrzypek, M.; Tillman, P.; Wells, G. B.; Lester, R. L.
(s, 3H), 0.10 (s, 3H), 0.88–0.91 (m, 12H), 1.26 (m, 24 H), 1.39–1.41 (m, 2H),
3.42–3.6 (m, 1H), 3.65–3.8 (m, 1H), 3.85–4 (m, 2H), 4.32 (m, 1H), 6.55 (s, 1H);
13C NMR (50 MHz, CDCl3) d ꢀ4.6, ꢀ4.4, 14.0, 17.9, 22.6, 24.9, 25.7, 29.3, 29.6,
31.8, 32.8, 54.3, 63.8, 71.9, 80.3, 160.3; Anal. Calcd for C25H51NO4Si (457.76): C,
65.59; H, 11.23; N, 3.06. Found. C, 65.35; H, 11.48; N, 3.36.
23. Spectral data of 12: mp = 48 °C; ½a D20
ꢁ
ꢀ25.95 (c 1.5, CHCl3); lit.12d a 2D0
½ ꢁ ꢀ25.1 (c
1.5, CHCl3); 1H NMR (200 MHz, CDCl3): 0.86 (t, J = 6 Hz, 3H), 1.2–1.3 (m, 24 H),
1.55 (m, 2H), 2.03 (s, 3H), 2.04 (s, 6H), 2.07 (s, 3H), 3.95–4.05(m, 2H), 4.5 (m,
1H), 5.02–5.18 (m, 2H), 5.92 (d, J = 10 Hz, 1H) .13C NMR (50 MHz, CDCl3): d
14.6, 21.2, 21.4, 23.6, 25.5, 30.1, 32.4, 33.9, 47.5, 63.5, 71.4, 72.4, 170.3, 170.6,
170.7, 171.1.
J. Bol. Chem. 1997, 272, 30196; (b) Schniter, R. BioEssays 1999, 21, 1004; (c)