S.-S. Shen et al. / Tetrahedron Letters 50 (2009) 3161–3163
3163
Table 2
5. (a) Bailey, N.; Dean, A. W.; Judd, D. B.; Middlemiss, D.; Storer, R.; Watson, S. P.
Bioorg. Med. Chem. Lett. 1996, 6, 1409; (b) Aitken, K. M.; Aitken, R. A.
Tetrahedron 2008, 64, 4384.
6. (a) Caballero, A.; Lloveras, V.; Curiel, D.; Tárraga, A.; Espinosa, A.; García, R.;
Vidal-Gancedo, J.; Rovira, C.; Wurst, K.; Molina, P.; Veciana, P. Inorg. Chem.
2007, 46, 825; (b) Thomsen, I.; Pedersen, U.; Rasmussen, P. B.; Yde, B.;
Andersen, T. P.; Lawesson, S. O. Chem. Lett. 1983, 809.
7. Typical procedure for 2-(furan-2-yl)-5-methylthiazole (2e): To a solution of N-(2-
bromoprop-2-enyl)furan-2-carbothioamide (1e) (100 mg, 0.41 mmol) in DMF
(20 mL) was added K2CO3 (84 mg, 0.61 mmol), and the mixture was stirred at
80 °C for 17 h. After the completion of the reaction, the mixture was quenched
with a pH 9 ammonium buffer solution, and extracted with diethyl ether
(10 mL ꢀ 3), the combined extracts were washed by brine and dried over
MgSO4. The solvent was removed in vacuo, and the resulting crude was purified
by PTLC (silica gel; ethyl acetate/hexane = 1/4) to afford the pure product 2-
(furan-2-yl)-5-methylthiazole (2e) in 74% yield. Yellow solid; mp 65–66 °C; 1H
NMR (300 MHz, CDCl3) d 7.43–7.46 (2H, m, overlapped), 6.90 (1H, d, J = 3.4 Hz),
6.50 (1H, dd, J = 1.8, 3.4 Hz), 2.49 (3H, s); 13C NMR (75 MHz, CDCl3) d 156.7,
Synthesis of imidazole-2-thiones 4
R1
N
R1
H
S
1.5 mol equiv. K2CO3
DMF, 80 ºC
N
N
N
Me
Br
S
R2
1m-r
4
R2
Entry
Thioureas
R1
R2
Imidazole-2-thiones 4 (yield%)a
1
2
3
4
5
6
1m
1n
1o
1p
1q
1r
i-C3H7
i-C3H7
i-C3H7
Ph
H
4m (78)
4n (77)
4o (81)
4p (87)
4q (91)
4r (65)
NO2
MeO
H
MeO
H
Ph
149.1, 143.2, 141.2, 133.2, 112.1, 108.0, 11.9; IR (NaCl)
m 3117, 2922, 1526,
1499, 1437, 1225, 1134, 1022, 883, 737 cmꢁ1; HRMS (ESI) calcd for C8H7NOS
(M+H+) 166.0327, found: 166.0326.
PhCH2
a
Isolated yield.
8. (a) Wohl, A.; Marckwald, W. Chem. Ber. 1889, 22, 568; (b) Marckwald, W. Chem.
Ber. 1892, 25, 2354.
9. Matsuda, K.; Yanagisawa, I.; Isomura, Y.; Mase, T.; Shibanuma, T. Synth.
Commun. 1997, 27, 3565.
10. Norbert, K.; Thomas, K. Synthesis 1993, 561.
tuted imidazole-2-thione 4m could be prepared selectively in good
yield from N,N0-trisubstituted thiourea 1m whose inner nitrogen
has two substituents (Scheme 5b).12,13
Several 1-(2-bromoprop-2-enyl)thioureas 1m–r have been
evaluated under the same reaction conditions as shown in Table
2. Various 1,3,4-trisubstituted imidazole-2-thiones 4 were pre-
pared in good yields.
In summary, by the nucleophilic substitution reaction of vinyl
bromide with intramolecular thioamide moieties, substituted thia-
zoles and imidazole-2-thiones could be successfully synthesized.
This vinylic substitution method would provide unique synthetic
routes for a variety of heterocycles.
11. (a) Heath, H.; Lawson, A.; Rimington, C. J. Chem. Soc. 1951, 2217; (b) Bullerwell,
R. A. F.; Lawson, A. J. Chem. Soc. 1951, 3030; (c) Avalos, M.; Babiano, R.; Cintas,
P.; Jimenez, J. L.; Palacios, J. C.; Silvero, G.; Valencia, C. Tetrahedron 1999, 55,
4377.
12. Typical procedure for 1-isopropyl-4-methyl-3-phenyl-1H-imidazole-2(3H)-thione
(4m): To a solution of 1-(2-bromoprop-2-enyl)-1-isopropyl-3-phenylthiourea
(1m) (100 mg, 0.31 mmol) in DMF (20 mL), was added K2CO3 (66 mg,
0.48 mmol), and the mixture was stirred at 80 °C for 2 h. After the
completion of the reaction, the mixture was quenched with
a pH 9
ammonium buffer solution, and extracted with ethyl acetate (10 mL ꢀ 3), the
combined extracts were washed by brine and dried over MgSO4. The solvent
was removed in vacuo, and the resulting crude was purified by PTLC (silica gel;
ethyl acetate/hexane = 1/2) to afford the pure product 4m in 78% yield. Faint
yellow crystals; mp 185–186 °C; 1H NMR (300 MHz, CDCl3) d 7.41–7.50 (3H,
m), 7.28–7.32 (2H, m), 6.59 (1H, s), 5.17 (1H, septet, J = 6.8 Hz), 1.93 (3H, s),
1.38 (6H, d, J = 6.8 Hz); 13C NMR (75 MHz, CDCl3) d 162.2, 136.5, 129.4(2),
Acknowledgment
129.0, 128.5(2), 126.5, 110.1, 48.5, 21.8(2), 11.0; IR (NaCl)
m 2976, 1518, 1499,
1408, 1344 cmꢁ1; HRMS (ESI) calcd for C13H16N2S (M+H+): 233.1112, found:
233.1112.
We acknowledge the Nanyang Technological University for
funding of this research.
13. The structure of 4m was secured by X-ray crystallographic analysis as shown
below
References and notes
1. Shiers, J. J.; Shipman, M.; Hayes, J. F.; Slawin, A. M. Z. J. Am. Chem. Soc. 2004, 126,
6868.
2. (a) Ochiai, M.; Oshima, K.; Masaki, Y. J. Am. Chem. Soc. 1991, 113, 7059; (b)
Okuyama, T.; Takino, T.; Sato, K.; Ochiai, M. J. Am. Chem. Soc. 1998, 120, 2275;
(c) Ochiai, M.; Nishi, Y.; Hirobe, M. Tetrahedron Lett. 2005, 46, 1863.
3. (a) Miyauchi, H.; Chiba, S.; Fukamizu, K.; Ando, K.; Narasaka, K. Tetrahedron
2007, 63, 5940; (b) Lei, M.-Y.; Fukamizu, K.; Xiao, Y.-J.; Liu, W.-M.; Twiddy, S.;
Chiba, S.; Ando, K.; Narasaka, K. Tetrahedron Lett. 2008, 49, 4125.
4. (a) Nicolaou, K. C.; Hao, J.; Reddy, M. V.; Rao, P. B.; Rassias, G.; Snyder, S. A.;
Huang, X.; Chen, D. Y.-K.; Brenzovich, W. E.; Giuseppone, N.; Giannakakou, P.;
O’Brate, A. J. Am. Chem. Soc. 2004, 126, 12897; (b) Wipf, P.; Rahman, L. T.;
Rector, S. R. J. Org. Chem. 1998, 63, 7132; (c) Benedí, C.; Bravo, C.; Uriz, P.;
Fernández, E.; Claver, C.; Castillón, S. Tetrahedron Lett. 2003, 44, 6073; (d)
Banert, K.; Al-Hourani, B. J.; Groth, S.; Vrobel, K. Synthesis 2005, 2920.
X-ray of 4m
.
CCDC-706193 contains the supplementary crystallographic data for compound
retrieving.html (or from the Cambridge Crystallographic Data Center, 12 Union
Road, Cambridge, CB21 EZ, UK; fax: (+44)1223-336-033; or deposit@cdc.
cam.ac.uk).