K. C. Majumdar et al. / Tetrahedron Letters 50 (2009) 3178–3181
3181
9. (a) Park, C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett.
2004, 6, 1159; (b) David, E.; Perrin, J.; Pellet-Rostaing, S.; Chabert, J. F.; Lemaire,
M. J. Org. Chem. 2005, 70, 3569; (c) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.;
Tymoschenko, M. F. Org. Lett. 2003, 5, 301; (d) Sezen, B.; Sames, D. J. Am. Chem.
Soc. 2003, 125, 5274; (e) Sezen, B.; Sames, D. J. Am. Chem. Soc. 2003, 125, 10580;
(f) Sezen, B.; Sames, D. Org. Lett. 2003, 5, 3607; (g) Rieth, R. D.; Mankad, N. P.;
Calimano, E.; Sadighi, J. P. Org. Lett. 2004, 6, 3981; (h) Okazawa, T.; Satoh, T.;
Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002, 124, 5286; (i) Yokooji, A.;
Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron 2003, 59, 5685; (j)
Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127,
7330; For a review: (k) Zificsak, C. A.; Hlasta, D. J. Tetrahedron 2004, 60, 8991.
10. Arnold, L. A.; Luo, W.; Guy, R. K. Org. Lett. 2004, 6, 3005.
11. For some recent reviews on Claisen rearrangement, see: (a) Majumdar, K. C.;
Alam, S.; Chattopadhyay, B. Tetrahedron 2008, 64, 597; (b) Castro, A. M. Chem.
Rev. 2004, 104, 2939; (c) Nubbemeyer, U. Synthesis 2003, 961.
12. Roe, J. M.; Webster, R. A. B.; Ganesan, A. Org. Lett. 2003, 5, 2825.
13. Nubbemeyer, U. Top. Curr. Chem. 2005, 244, 149.
changes the outcome of the reaction and only 20% of 9a was ob-
tained. Replacement of KOAc with NaOAc was also found to be
effective (entry 3). The effects of other bases were also studied,
and the use of Ag2CO3 was found to be ineffective.
A study of the solvent effect (DMF, MeCN, 1,4-dioxane, THF, tol-
uene, Et3 N) suggested that DMF is the best choice. After achieving
the optimized results, other substrates 8b–f were similarly treated
under optimized reaction conditions to afford the corresponding
exo-Heck cyclized products dibenzo-azocines derivatives 9b–f in
72–79% yields. The results are summarized in Table 3.
The formation of medium-sized exo-, and endo-Heck products is
quite difficult. The formation of the exo-Heck product is favoured be-
cause of the less steric as well as transannular interaction.18 The dib-
enzoazocines were obtained through a 8-exo-trig mode of cyclization.
In conclusion, we have developed an efficient synthetic strategy
for the selective aromatic aza-Claisen rearrangement of free NH-
allylated aniline derivatives for the preparation of N-tethered Heck
precursors possessing diversity relevant to drug design and drug
discovery. The protocol is simple, straightforward and interesting.
A synthetic route for the construction of the dibenzoazocine from
unactivated allylic substrates by the intramolecular Heck reaction
has been developed.
14. Correa, A.; Tellitu, I.; Dominguez, E.; Sanmartin, R. J. Org. Chem. 2006, 71, 8316.
15. (a) Gazith, M.; Noys, R. M. J. Am. Chem. Soc. 1955, 77, 6091; (b) Gardner, I. J.;
Noys, R. M. J. Am. Chem. Soc. 1961, 83, 2409.
16. Majumdar, K. C.; Chattopadhyay, B.; Nath, S. Tetrahedron Lett. 2008, 49, 1609.
17. Tsuji, J.. Palladium Reagents and Catalysts. In New Perspective for the 21st
Century; Wiley, 2004. 2nd Chapter.
18. (a) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95; (b) Beletskaya, I. P.;
Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
19. Some selected spectral data: Synthesis of Heck precursors 8a: A mixture of the
compounds 5a (210 mg, 0.697 mmol) and 2-bromobenzylbromide 6a
(191.9 mg, 0.767 mmol) and dry K2CO3 (1.0 gm) in dry acetone (50 ml) in the
presence of sodium iodide was refluxed for 3.5 h. The reaction mixture was
cooled and filtered, and the solvent was removed. The residual mass was
extracted with chloroform (3 Â 30 ml), washed with water followed by brine-
water and dried (Na2SO4). Removal of chloroform gave a crude product, which
was chromatographed over silica gel (60–120 mesh). Elution of the column
with pet. ether–ethyl acetate (5%) gave compounds 8a.Compound 8a: Yield
89%.; solid; mp 79–80 °C.IR (KBr, cmÀ1): 1149, 1338, 2852, 2911.1H NMR
(CDCl3, 400 MHz): dH = 2.24 (s, 3H, CH3), 2.45 (s, 3H, CH3), 3.18 (d, 2H,
J = 6.6 Hz, @CH–CH2), 4.48 (d, 1H, J = 13.7 Hz, N–CHaHb), 4.89 (dd, 1H,
J = 11.2 Hz, J = 3.0 Hz, @CHaHb), 4.93 (dd, 1H, J = 17.2 Hz, J = 3.0 Hz, @CHaHb),
5.09 (d, 1H, J = 13.7 Hz, N–CHaHb), 5.36–5.46 (m, 1H, @CH), 6.58 (d, 1H,
J = 8.1 Hz, ArH), 6.82 (d, 1H, J = 8.1 Hz, ArH), 6.91 (s, 1H, ArH), 7.04 (t, 1H,
J = 7.6 Hz, ArH), 7.17 (t, 1H, J = 7.6 Hz, ArH), 7.30 (d, 2H, J = 7.9 Hz, ArH), 7.39 (d,
2H, J = 7.8 Hz, ArH), 7.60 (d, 2H, J = 7.9 Hz, ArH).13C NMR (CDCl3, 75 MHz):
dC = 21.1, 21.6, 34.8, 55.1, 116.1, 124.4, 127.1, 127.3, 128.0, 128.1, 129.3, 129.5,
130.7, 131.9, 132.7, 134.2, 134.9, 135.5, 136.8, 138.2, 141.2, 143.6.HRMS:
Calculated for C24H24BrNO2S: 492.0609 (M+), 494.0609 (M+2). Found:
492.0609 (M+), 494.0591 (M+2).Anal. Calcd for C24H24BrNO2S: C, 61.28; H,
5.14; N, 2.98. Found: C, 61.58; H, 4.89; N, 3.11.
Acknowledgements
We thank the CSIR (New Delhi) and the DST (New Delhi) for
financial assistance. Two of us (B.C. and S.S.) are grateful to the CSIR
(New Delhi) for
respectively.
a senior and a junior research fellowship,
References and notes
1. Bertha, C. M.; Ellis, M.; Filippen-Anderson, J. L.; Porreca, F.; Rothman, R. B.;
Davis, P.; Xu, H.; Becktts, K.; Rice, K. C. J. Med. Chem. 1996, 38, 2081.
2. Alvarez, M.; Joule, A.. In Alkaloids; Chemistry and Biology; Academic Press: New
York, 2001; Vol. 57.
3. Kessel, B. J.; Simpson, M. G.. In Comprehensive Textbook of Psychiatry; Kaplan, H.
I., Sadock, B. J., Eds.; Williams and Wilkins: Baltimore, 1995; Vol. 2, p 2095.
4. Gil, L.; Gil, R. P. d. F.; dos Santos, D. C.; Marazano, C. Tetrahedron Lett. 2000, 41,
6067.
5. (a) Gulias, M.; Garcia, R.; Delgado, A.; Castedo, L.; Mascarenas, J. L. J. Am. Chem.
Soc. 2006, 128, 384; (b) Bandini, M.; Melloni, A.; Piccinelli, F.; Sinisi, R.;
Tommasi, S.; Bonchi, A. U. J. Am. Chem. Soc. 2006, 128, 1424; (c) Yip, K. T.; Yang,
M.; Law, K. L.; Zhu, N. Y.; Yang, D. J. Am. Chem. Soc. 2006, 128, 3130; (d) Kamijo,
S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2002, 41, 3230; (e) Wtulski, B.; Alayrac,
C.; Saeftel, L. Angew. Chem., Int. Ed. 2003, 42, 4257.
6. (a) Majumdar, K. C.; Chattopadhyay, B. Synlett 2008, 979; (b) Majumdar, K. C.;
Chattopadhyay, B.; Ray, K. Tetrahedron Lett. 2007, 48, 7633; (c) Majumdar, K. C.;
Chattopadhyay, B.; Sinha, B. Tetrahedron Lett. 2008, 49, 1319; (d) Majumdar, K.
C.; Sinha, B.; Chattopadhyay, B.; Ray, K. Tetrahedron Lett. 2008, 49, 4405; (e)
Majumdar, K. C.; Chattopadhyay, B.; Sinha, B. Synthesis 2008, 3857; (f)
Majumdar, K. C.; Chattopadhyay, B.; Chakravorty, S. Synthesis 2009, 674; (g)
Majumdar, K. C.; Mondal, S.; De, N. Synlett 2008, 2851.
20. General procedure for the synthesis of the compounds 9 by Heck reaction: A
mixture of 8a (100 mg, 0.212 mmol), tetrabutylammonium bromide
(82.41 mg, 0.255 mmol) and dry potassium acetate (52.12 mg, 0.531 mmol)
was taken in dry N,N-dimethylformamide (DMF) (10 mL) under nitrogen
atmosphere. Pd(OAc)2 (10 mol %, 4.76 mg) was added, and the reaction
mixture was stirred at 90 °C for 6 h. The reaction mixture was cooled, water
(20 mL) was added, extracted with ethyl acetate (3 Â 30 mL) and the ethyl
acetate extract was washed with water (2 Â 40 mL), followed by brine (30 mL).
The organic layer was dried (Na2SO4), and the solvent was distilled off to
furnish a viscous mass, which was purified by column chromatography over
silica gel. Elution of the column with 4% ethyl acetate-petroleum ether afforded
the product 9a.
Compound 9a: Yield 72%; solid; mp 138–139 °C. IR (KBr, cmÀ1): 1147, 1330.1H
NMR (CDCl3, 400 MHz): dH = 2.18 (s, 3H, CH3), 2.42 (s, 3H, CH3), 3.20 (s, 2H,
CH2), 4.97 (br s, 1H, N–CHaHb), 4.99 (br s, 1H, N-CHaHb), 5.00 (d, 1H, J = 1.1 Hz,
@CHaHb), 5.13 (d, 1H, J = 1.1 Hz, @CHaHb), 6.74–6.78 (m, 2H, ArH), 6.83 (s, 1H,
ArH), 7.01 (d, 2H, J = 6.9 Hz, ArH), 7.10–7.16 (m, 3H, ArH), 7.32–7.35 (m, 1H,
ArH), 7.38-7.45 (m, 2H, ArH).
7. (a)Gibson,S. E.; Guillo, N.; Jones, J. O.;Buck, I. M.; Kalindjian, S. B.; Roberts, S.;Tozer,
M. J. Eur. J. Med. Chem. 2002, 37, 379; (b) Gibson, S. E.; Guillo, N.; Middleton, R. J.;
Thuilliez, A.; Tozer, M. J. J. Chem. Soc., Perkin Trans. 1 1997, 447; (c) Gibson, S. E.;
Middleton,R.J.J. Chem.Soc., Chem.Commun. 1995,1743;(d)Gibson,S.E.;Jones,J.O.;
McCague, R.;Tozer,M.J.;Whitcombe,N.J. Synlett1999, 954;(e)Gibson, S. E.;Guillo,
N.; Kalindjian, S. B.; Tozer, M. J. Bioorg. Med. Chem. Lett. 1997, 7, 1289; (f) Gibson, S.
E.; Mainolfi, N.; Kalindjian, S. B.; Wright, P. T. Chem. Commun. 2003, 1568; (g)
Arnold, L. A.; Guy, R. K. Bioorg. Med. Chem. Lett. 2006, 16, 5360.
13C NMR (CDCl3, 75 MHz): dC = 20.9, 21.5, 54.9, 126.3, 126.6, 127.2, 127.3,
127.5, 127.8, 127.9, 128.1, 128.6, 128.8, 128.9, 129.2, 129.5, 130.2, 130.5, 130.9,
131.8, 132.4, 138.1, 143.2, 147.8.
HRMS: Calculated for C24H23NO2S: 412.1347 (M+Na)+. Found: 412.1347
(M+Na)+.
Anal. Calcd for C24H23NO2S: C, 74.00; H, 5.95; N, 3.60. Found: C, 74.19; H, 5.77;
N, 3.71.
8. (a) Alcaide, B.; Almendros, P.; Rodriguez-Acebes, R. J. Org. Chem. 2005, 70, 2713;
(b) Molander, G. A.; Dehmel, F. J. Am. Chem. Soc. 2004, 126, 10313.