Communication
Organic & Biomolecular Chemistry
J. Med. Chem., 1989, 32, 874; (c) C. Pardin, J. N. Pelletier,
W. D. Lubell and J. W. Keillor, J. Org. Chem., 2008, 73, 5766.
2 (a) X. Deng, D. Wu, C. Wei and Z. Quan, Med. Chem. Res.,
2011, 20, 1273; (b) L. Zhang, J. Zhang, H. Fang, Q. Wang and
W. Xu, Bioorg. Med. Chem., 2006, 14, 8286; (c) X. Jiang and
Y. Zhen, Anticancer Drugs, 2000, 11, 49; (d) P. Baraldi,
I. Beria, P. Cozzi, C. Geroni, A. Espinosa, M. Gallo,
A. Entrena, J. Bingham, J. Hartley and R. Romagnoli, Bioorg.
Med. Chem., 2004, 12, 3911; (e) D. Welch, D. Harper and
K. Yohem, Clin. Exp. Mestastasis, 1993, 11, 201; (f) P. De,
M. Baltas and F. Bedos-Belval, Curr. Med. Chem., 2011, 18,
1672; (g) V. Srivastava, A. Srivastava, A. Tiwari, R. Srivastava,
R. Sharma, H. Sharma and V. Singh, Chem. Biol. Drug Des.,
2009, 74, 297; (h) S. Nagamura, A. Asai, N. Amishiro,
E. Kobayashi, K. Gomi and H. Saito, J. Med. Chem., 1997, 40,
972; (i) L. Guan, C. Wei, X. Deng, X. Sui, H. Piao and
Z. Quan, Eur. J. Med. Chem., 2009, 44, 3654; ( j) W. Zhang,
C. W. Haskins, Y. Yang and M. Dai, Org. Biomol. Chem.,
2014, 12, 9109.
Scheme 7 Proposed mechanism for cinnamide formations.
The radical intermediate species A would further undergo
an oxidation and deprotonation process to produce the key
intermediate benzaldehyde 8 under the synergistic interactions
of KOH and oxygen. On the other hand, a proton in the N,N-
dimethylacetamide 2a would be abstracted by KOH to yield the
anion intermediate B, followed by a sequence of nucleophilic
addition and dehydration, thereby converting it into the final
cinnamide product, 3a.
In summary, stimulated by the initial design scenario of
developing an alternative technology for α,β-unsaturated
amide formation leveraging on visible-light-enabled photo-
redox catalysis, we have established a simple, versatile, and
straightforward method that utilized stable and abundantly
available benzyl alcohols and N,N-dialkylacetamides as the
substrates and operated efficiently under mild reaction con-
ditions. It was revealed that a diverse range of cinnamide sub-
stances having various useful functionalities in moderate-to-
excellent yield can be easily prepared using this method. It is
worth noting that the reactivity, without the assistance of any
strong oxidants and transition-metal catalysts, will add further
to its application. Given the extensively appreciated signifi-
cance of cinnamide-type substances in pharmaceutical and
biological context, it is well predicted that this new protocol
would have broader practicalities and encourage further
studies in due course.
3 (a) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606;
(b) K. Yamada, Y. Karuo, Y. Tsukada and M. Kunishima,
Chem. – Eur. J., 2016, 22, 14042; (c) Y. Kim and S. Chang,
Angew. Chem., Int. Ed., 2016, 128, 226.
4 (a) T. Fujihara, Y. Katafuchi, T. Iwai, J. Terao and Y. Tsuji,
J. Am. Chem. Soc., 2010, 132, 2094; (b) P. S. Kumar,
G. S. Kumar, R. A. Kumar, N. V. Reddy and R. Reddy,
Eur. J. Org. Chem., 2013, 1218; (c) S. Priyadarshini,
P. J. A. Joseph and M. L. Kantam, RSC Adv., 2013, 3, 18283;
(d) R. P. Woodbury and M. W. Rathke, J. Org. Chem., 1978,
43, 1947; (e) V. P. W. Bohm and W. A. Herrmann, Chem. –
Eur. J., 2000, 6, 1017; (f) D. Saberi, S. Mahdudi, S. Cheraghi
and A. Heydari, J. Organomet. Chem., 2014, 772–773, 222;
(g) X. Yang, W. Wei, H. Li, R. Song and J. Li, Chem.
Commun., 2014, 50, 12867.
5 For selected reviews on photo-redox catalysis, see:
(a) I. K. Sideri, E. Voutyritsa and C. G. Kokotos, Org. Biomol.
Chem., 2018, 16, 4596; (b) L. Ravindar, L. Revathi, W. Fang,
K. P. Rakesh and H. Qin, Adv. Synth. Catal., 2018, DOI:
10.1002/adsc.201800736; (c) J. K. Matsui, S. B. Lang,
D. R. Heitz and G. A. Molander, ACS Catal., 2017, 7, 2563;
(d) J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc.
Rev., 2011, 40, 102; (e) C. K. Prier, D. A. Rankic and
D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322;
(f) D. P. Hari and B. König, Chem. Commun., 2014, 50, 6688;
(g) J. Xuan, Z.-G. Zhang and W.-J. Xiao, Angew. Chem., Int.
Ed., 2015, 54, 15632; (h) N. Romero and D. Nicewicz, Chem.
Rev., 2016, 116, 10075; (i) D. Yan, J. R. Chen and W. J. Xiao,
Angew. Chem., Int. Ed., 2018, DOI: 10.1002/anie.201811102;
( j) V. Srivastava and P. Singh, RSC Adv., 2017, 7, 31377.
6 (a) D. P. Hari, T. Hering and B. König, Org. Lett., 2012, 14,
5334; (b) D. P. Hari, P. Schroll and B. König, J. Am. Chem.
Soc., 2012, 134, 2958; (c) M. Rueping, S. Zhu and
R. M. Koenigs, Chem. Commun., 2011, 47, 8679; (d) J. Zhang,
L. Wang, Q. Liu, Z. Yang and Y. Huang, Chem. Commun.,
2013, 49, 11662; (e) M. Rueping and C. Vila, Org. Lett., 2013,
15, 2092; (f) S. Zhu and M. Rueping, Chem. Commun., 2012,
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
The work was supported by the National Natural Science
Foundation of China (No. 21502086 and 41575118), Natural
Science Foundation of Fujian Province (No. 2015J05028),
Outstanding Youth Science Foundation of Fujian Province (No.
2015J06009), and Program for Excellent Talents of Fujian
Province.
Notes and references
1 (a) B. Costall, S. G. Hui and R. J. Naylor, J. Pharm.
Pharmacol., 1980, 32, 594; (b) M. W. Harrold, R. A. Wallace,
T. Farooqui, L. J. Wallace, N. Uretsky and D. D. Miller,
452 | Org. Biomol. Chem., 2019, 17, 449–453
This journal is © The Royal Society of Chemistry 2019