Z. Huo, Y. Yamamoto / Tetrahedron Letters 50 (2009) 3651–3653
3653
Org. Chem. 1988, 53, 3238; (c) Girling, I. R.; Widdowson, D. A. Tetrahedron Lett.
1982, 23, 4281; (d) Huang, Q.; Hunter, J. A.; Larock, R. C. Org. Lett. 2001, 3, 2973;
(e) Roesch, K. R.; Zhang, H.; Larock, R. C. J. Org. Chem. 1998, 63, 5306; (f) Roesch,
K. R.; Zhang, H.; Larock, R. C. J. Org. Chem. 2001, 66, 8042; (g) Dai, G.; Larock, R.
C. J. Org. Chem. 2002, 67, 7042; (h) Huoang, Q.; Larock, R. C. J. Org. Chem. 2003,
68, 980; (i) Gao, H.; Zhang, J. Adv. Synth. Catal. 2009, 351, 85; (j) Yeom, H.; Kim,
S.; Shin, S. Synlett 2008, 924.
erate intermediate A, and subsequent nucleophilic attack of the
nitrogen atom on the electron-deficient alkyne forms the interme-
diate B. Elimination of N2 and H+ forms C. Protonolysis of C then re-
sults in the formation of isoquinoline 2 and regenerates the gold
catalyst.
In conclusion, we have developed an efficient method for the
synthesis of isoquinolines from 2-alkynyl benzyl azides. The cycli-
zation proceeds very smoothly in the presence of AuCl3 and
AgSbF6. Further studies to extend the scope of this procedure are
in progress in our laboratory.
8. (a) Asao, N.; Yudha, S.; Nogami, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2005,
44, 5526; (b) Ohtaka, M.; Nakamura, H.; Yamamoto, Y. Tetrahedron Lett. 2004,
45, 7339.
9. Asao, N.; Iso, K.; Yudha, S. Org. Lett. 2006, 8, 4149.
10. (a) Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Yamamoto, Y. Angew.
Chem., Int. Ed. 2007, 46, 4764; (b) Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N.
T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2008, 130, 15720; (c) Huo, Z.;
Tomeba, H.; Yamamoto, Y. Tetrahedron Lett. 2008, 49, 5531; (d) Ding, Q.; Chen,
Z.; Yu, X.; Peng, Y.; Wu, J. Tetrahedron Lett. 2009, 50, 340; (e) Ding, Q.; Wu, J.
Adv. Synth. Catal. 2008, 50, 1850; (f) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org.
Chem. 2001, 3, 2973; (g) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002,
67, 3437; Iminyl radical cyclization chemistry, see: (h) Alonso, R.; Campos, P. J.;
Garcia, B.; Rodriguez, M. A. Org. Lett. 2006, 8, 3521.
References and notes
1. Bentley, K. W.. In The Isoquinoline Alkaloids; Hardwood Academic: Amsterdam,
1998; Vol. 1.
2. (a) Dzierszinski, F.; Coppin, A.; Mortuaire, M.; Dewally, E.; Slomianny, C.;
Ameisen, J.-C.; Debels, F.; Tomavo, S. Antimicrob. Agents. Chemother. 2002, 46,
3197; (b) Kletsas, D.; Li, W.; Han, Z.; Papadopoulos, V. Biochem. Pharmacol.
2004, 67, 1927; (c) Mach, U. R.; Hackling, A. E.; Perachon, S.; Ferry, S.;
Wermuth, C. G.; Schwartz, J.-C.; Sokoloff, P.; Stark, H. ChemBioChem 2004, 5,
508; (d) Muscarella, D. E.; O’Brian, K. A.; Lemley, A. T.; Bloom, S. E. Toxicol. Sci.
2003, 74, 66.
3. See, for example: (a) Sweetman, B. A.; Müller-Bunz, H.; Guiry, P. J. Tetrahedron
Lett. 2005, 46, 4643; (b) Durola, F.; Sauvage, J.-P.; Wenger, O. S. Chem. Commun.
2006, 171; (c) Lim, C. W.; Tissot, O.; Mattison, A.; Hooper, M. W.; Brown, J. M.;
Cowley, A. R.; Hulmes, D. I.; Blacker, A. J. Org. Process. Res. Dev. 2003, 7, 379; (d)
Alcock, N. W.; Brown, J. W.; Hulmes, G. I. Tetrahedron: Asymmetry 1993, 4, 743.
4. (a) Whaley, W. M.; Govindachari, T. R. In Organic Reactions; Adams, R., Ed.; Vol.
6; Wiley: New York, 1951; pp 151–190; (b) Whaley, W. M.; Govindachari, T. R.
In Organic Reactions; Adams, R., Ed.; Vol. 6; Wiley: New York, 1951; pp 74–150;
(c) Gensler, W. J.. In Organic Reactions; Adams, R., Ed.; Wiley: New York, 1951;
Vol. 6, pp 191–206; (d) Bentley, K. W. Nat. Prod. Rep. 2005, 22, 249.
5. Sotomayor, N.; Dominguez, E.; Lete, E. J. Org. Chem. 1996, 61, 4062.
6. (a) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797; (b) Chrzanowska, M.;
Rozwadowska, M. D. Chem. Rev. 2004, 104, 3341.
11. Bajracharya, G. B.; Pahadi, N. K.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem. 2006,
71, 6204.
12. General procedure for the synthesis of isoquinoline 2a from 2-alkynyl benzyl azide
1a: To a THF (2 mL, 0.1 M) solution of AuCl3 (18.2 mg, 0.06 mmol) and AgSbF6
(61.8 mg, 0.18 mmol) which were weighed in a glove box, was added 2-alkynyl
benzyl azide 1a (46.6 mg, 0.2 mmol) at room temperature under an Ar
atmosphere in a pressured vial. The mixture was stirred at 100 °C for 12 h. The
reaction progress was monitored by TLC (hexane/ethyl acetate; 2:1). After
consumption of 1a, the reaction mixture was cooled to room temperature and
filtered through
a short Florisil pad using ethyl acetate as eluent. After
concentration, the residue was purified by column chromatography (silica gel,
hexane/ethyl acetate; 20:1–5:1) to afford product 2a in 67% yield as a white
solid (27.5 mg). Mp: 97–98 °C; 1H NMR (300 MHz, CDCl3): d 9.35 (s, 1H), 8.13
(d, J = 7.5 Hz, 2H), 8.08 (s, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H),
7.70 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.5 Hz, 2H), 7.42 (t,
J = 7.5 Hz, 1H); 13C NMR (75 MHz, CDCl3): 152.3, 151.1, 139.2, 136.4, 130.3,
128.6, 128.4, 127.6, 127.4, 126.8, 126.6, 126.5, 116.0; IR (KBr) 3346, 2859,
1626, 1455, 684 cmꢀ1; HRMS (EI) Calcd for C15H11NNa ([M+Na]+) 228.0784.
Found 228.0783.
Data for 3a. See: Chowdhury, C.; Mandal, S. B.; Achari, B. Tetrahedron Lett. 2005,
46, 8531.
7. See, for example: (a) Maassarani, F.; Pfeffer, M.; Le Borgne, G. J. Chem. Soc.,
Chem. Commun. 1987, 565; (b) Wu, G.; Geib, S.; Rheingold, A. L.; Heck, R. F. J.