4114 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 14
Nagase et al.
Yamada, N. Crucial role of a long-chain fatty acid elongase,
Elovl6, in obesity-induced insulin resistance. Nat. Med. 2007, 13,
1193–1202.
(5) Shi, Y.; Burn, P. Lipid metabolic enzymes: emerging drug targets
for the treatment of obesity. Nat. Rev. Drug Discovery 2004, 3,
695–710.
(6) Moon, Y. A.; Shah, N. A.; Mohapatra, S.; Warrington, J. A.;
Horton, J. D. Identification of a mammalian long chain fatty acyl
elongase regulated by sterol regulatory element-binding proteins.
J. Biol. Chem. 2001, 276, 45358–45366.
(7) Matsuzaka, T.; Shimano, H.; Yahagi, N.; Yoshikawa, T.; Ame-
miya-Kudo, M.; Hasty, A. H.; Okazaki, H.; Tamura, Y.; Iizuka,
Y.; Ohashi, K.; Osuga, J.; Takahashi, A.; Yato, S.; Sone, H.;
Ishibashi, S.; Yamada, N. Cloning and characterization of a
mammalian fatty acyl-CoA elongase as a lipogenic enzyme regu-
lated by SREBPs. J. Lipid Res. 2002, 43, 911–920.
(8) Fatty acyl-CoA elongation in microsomal fractions requires four
sequential steps: (1) condensation between fatty acyl-CoA and
malonyl-CoA to generate β-ketoacyl-CoA by ELOVLs, (2) reduc-
tion by β-ketoacyl-CoA reductase, (3) dehydrogenase by β-hydro-
xyacyl-CoA dehydrogenase, and (4) reduction by trans-2,3-enoyl-
CoA reductase (see refs 9 and 10). ELOVL enzymes are responsible
for the initial condensation reaction, which is rate-limiting in the
four sequential steps (see refs 6 and 7).
Figure 2. Effects of 1w on ELOVL6 activity in the liver of C57BL/
6J mice. Male C57BL/6J mice were orally administered vehicle
(0.5% methylcellulose) and 1, 3, and 10 mg/kg 1w (suspended
in 0.5% methylcellulose), and 1 h later [1-14C]palmitic acid was
interperitoneally administered at 10 μCi/body. At 2 h postdosing of
1w, fatty acids were extracted and measured by radio-HPLC to
calculate the elongation index. The basal C18/16 ratio 2 h after oral
administration of vehicle (0.5% methylcellulose) was ∼0.15, which
was set as a baseline (100%).
(9) Barrett, P. B.; Harwood, J. L. Characterization of fatty acid
elongase enzymes from germinating pea seeds. Phytochemistry
1998, 48, 1295–1304.
to probe the pharmacological effects of ELOVL6 inhibitor in
rodents.
(10) Nugteren, D. H. The enzymic chain elongation of fatty acids by rat-
liver microsomes. Biochim. Biophys. Acta 1965, 106, 280–290.
(11) Kumadaki, S.; Matsuzaka, T.; Kato, T.; Yahagi, N.; Yamamoto,
T.; Okada, S.; Kobayashi, K.; Takahashi, A.; Yatoh, S.; Suzuki, H.;
Yamada, N.; Shimano, H. Mouse Elovl-6 promoter is an SREBP
target. Biochem. Biophys. Res. Commun. 2008, 368, 261–266.
(12) Tvrdik, P.; Asadi, A.; Kozak, L. P.; Nedergaard, J.; Cannon, B.;
Jacobsson, A. Cig30, a mouse member of a novel membrane
protein gene family, is involved in the recruitment of brown adipose
tissue. J. Biol. Chem. 1997, 272, 31738–31746.
(13) Tvrdik, P.; Westerberg, R.; Silve, S.; Asadi, A.; Jakobsson, A.;
Cannon, B.; Loison, G.; Jacobsson, A. Role of a new mammalian
gene family in the biosynthesis of very long chain fatty acids and
sphingolipids. J. Cell Biol. 2000, 149, 707–718.
(14) Zhang, K.; Kniazeva, M.; Han, M.; Li, W.; Yu, Z.; Yang, Z.; Li, Y.;
Metzker, M. L.; Allikmets, R.; Zack, D. J.; Kakuk, L. E.; Lagali, P.
S.; Wong, P. W.; MacDonald, I. M.; Sieving, P. A.; Figueroa, D. J.;
Austin, C. P.; Gould, R. J.; Ayyagari, R.; Petrukhin, K. A 5-bp
deletion in ELOVL4 is associated with two related forms of
autosomal dominant macular dystrophy. Nat. Genet. 2001, 27,
89–93.
In conclusion, optimization of the lead 1a led to the
identification of the potent and selective ELOVL6 inhibitor
1w. Compound 1w displayed excellent selectivity against other
ELOVL subtypes, hERG K+ channel, and a panel of 168
unrelated biological targets. Compound 1w potently reduced
the elongation index in mouse hepatocyte cells H2.35. Further-
more, 1w displayed sustained exposure in plasma, liver, and
white adipose tissues in mice after oral dosing. Oral adminis-
tration of 1w potently and dose-proportionally suppressed the
elongation index of fatty acids in the liver in mice. Taken
together, these findings suggest that 1w is a promising in vivo
tool for the evaluation of pharmacological effects of ELOVL6
inhibition in rodents. Updated results of pharmacological
studies using 1w in rodents will be reported in due course.
Acknowledgment. We thank Naomi Morita and
Dr. Tomoyuki Ohe for collecting pharmacokinetic data,
Hirokazu Ohsawa for collecting the high-resolution mass
spectral data, and Hiroaki Suwa for HPLC purity analyses.
We also thank Dr. Peter T. Meinke (Merck Research Labora-
tories, Rahway, NJ) for the editing of this manuscript.
(15) Leonard, A. E.; Bobik, E. G.; Dorado, J.; Kroeger, P. E.; Chuang,
L. T.; Thurmond, J. M.; Parker-Barnes, J. M.; Das, T.; Huang, Y.
S.; Mukerji, P. Cloning of a human cDNA encoding a novel
enzyme involved in the elongation of long-chain polyunsaturated
fatty acids. Biochem. J. 2000, 350, 765–770.
(16) Brolinson, A.; Fourcade, S.; Jakobsson, A.; Pujol, A.; Jacobsson,
A. Steroid hormones control circadian Elovl3 expression in mouse
liver. Endocrinology 2008, 149, 3158–3166.
(17) Wang, Y.; Botolin, D.; Xu, J.; Christian, B.; Mitchell, E.; Jayapra-
kasam, B.; Nair, M.; Peters, J. M.; Busik, J.; Olson, L. K.; Jump, D.
B. Regulation of hepatic fatty acid elongase and desaturase ex-
pression in diabetes and obesity. J. Lipid Res. 2006, 47, 2028–2041.
(18) Miyazaki, M.; Dobrzyn, A.; Man, W. C.; Chu, K.; Sampath, H.;
Kim, H. J.; Ntambi, J. M. Stearoyl-CoA desaturase 1 gene expres-
sion is necessary for fructose-mediated induction of
lipogenic gene expression by sterol regulatory element-binding
protein-1c-dependent and -independent mechanisms. J. Biol.
Chem. 2004, 279, 25164–25171.
(19) Shimamura, K.; Miyamoto, Y.; Kobayashi, T.; Kotani, H.; Tokita,
S. Establishment of a high throughput assay for long chain fatty
acyl-CoA elongase using homogeneous scintillation proximity
assay. Assay Drug Dev. Technol., in press.
(20) The detailed experimental procedure for evaluation of metabolic
stability in mouse microsomes is described in Supporting Information.
(21) Ntambi, J. M.; Miyazaki, M. J. Recent insights into stearoyl-CoA
desaturase-1. Curr. Opin. Lipidol. 2003, 14, 255–261.
Supporting Information Available: Synthetic procedures and
characterization data for all compounds; biological protocols.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Unger, R. H. Minireview: weapons of lean body mass destruction:
the role of ectopic lipids in the metabolic syndrome. Endocrinology
2003, 144, 5159–5165.
(2) Delarue, J.; Magnan, C. Free fatty acids and isuline resistance.
Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 142–148.
(3) Cao, H.; Gerhold, K.; Mayers, J. R.; Wiest, M. M.; Watkins, S. M.;
Hotamisligil, G. S. Identification of a lipokine, a lipid hormone
linking adipose tissue to systemic metabolism. Cell 2008, 134,
933–944.
(4) Matsuzaka, T.; Shimano, H.; Yahagi, N.; Kato, T.; Atsumi, A.;
Yamamoto, T.; Inoue, N.; Ishikawa, M.; Okada, S.; Ishigaki, N.;
Iwasaki, H.; Iwasaki, Y.; Karasawa, T.; Kumadaki, S.; Matsui, T.;
Sekiya, M.; Ohashi, K.; Hasty, A. H.; Nakagawa, Y.; Takahashi,
A.; Suzuki, H.; Yatoh, S.; Sone, H.; Toyoshima, H.; Osuga, J.;
(22) Nishimura, I.; Hirano, A.; Yamashita, T.; Fukami, T. Improve-
ment of the high-speed log D assay using an injection marker for the
water plug aspiration/injection method. J. Chromatogr., A 2009,
1216, 2984–2988.