LETTER
Synthesis of Substituted Methylenetetrahydrofurans
971
(9) For overviews on the synthesis of tetrahydrofurans, see:
(a) Kröper, H. In Houben Weyl, 4th ed., Vol. 3; Müller, E.,
Ed.; Thieme: Stuttgart, 1965, 517. (b) Eberbach, W. In
Houben-Weyl, Vol. E6a; Kreher, R. P., Ed.; Thieme:
Stuttgart, 1994, 16. For different approaches to racemic 2,3-
disubstituted-4-methylenetetrahydrofurans, see: (c) Jana,
S.; Guin, C.; Roy, S. C. Tetrahedron Lett. 2005, 46, 1155.
(d) Ranu, B. C.; Mandal, T. Tetrahedron Lett. 2006, 79,
2859. (e) Tang, F.; Chen, C.; Moeller, K. D. Synthesis 2007,
3411.
(10) Herrmann, W. A.; Broßmer, C.; Öfele, K.; Reisinger, C.-P.;
Priermeier, T.; Beller, M.; Fischer, H. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1844; Angew. Chem. 1995, 107, 1989.
(11) (a) Frauenrath, H.; Philipps, T. Liebigs Ann. Chem. 1985,
1951. (b) Hartung, J.; Kneuer, R. Eur. J. Org. Chem. 2000,
1677.
H, CH2Ar), 2.98 (m, 1 H, 3-H), 4.50 (m, 1 H, 5-H), 4.64 (m,
1 H, 5-H), 4.65 (d, J = 6.0 Hz, 1 H, 2-H), 4.84 (d, J = 1.89
Hz, 1 H, C=CHH), 5.01 (d, J = 1.58 Hz, 1 H, C=CHH), 7.09
(d, J = 8.20 Hz, 2 H, m-ArCl), 7.28 (m, 7 H, arom. H). 13
C
NMR (125 MHz, CDCl3): d = 22.02, 27.96, 31.83, 35.68,
69.25, 86.53, 101.37, 124.51, 127.04, 129.65, 130.51,
141.74, 154.69. GC-MS (tR = 10.70 min): m/z (%) = 284 (5)
[M]+, 158 (72), 143 (100).
Compound 1ad: 1H NMR (500 MHz, CDCl3): d = 0.81 (m,
3 H, CH3), 1.21 (m, 10 H, CH2), 1.87 (m, 1 H, CHCHH),
2.33 (m, CHCHH), 2.58 (m, 1 H, 3-H), 4.35 (dq, Jd = 13.24
Hz, Jq = 2.21 Hz, 1 H, 5-H), 4.54 (m, 1 H, 5-H), 4.92 (q,
J = 2.05 Hz, 1 H, 2-H), 5.27 (m, 2 H, C=CHH, CH=CH),
5.41 (m, 2 H, C=CHH, CH=CH), 7.27 (d, J = 4.10 Hz, 2 H,
o-arom. H), 7.38 (t, J = 7.72 Hz, 2 H, m-arom. H), 7.53 (dd,
J = 1.10, 8.35 Hz, 1 H, p-arom. H). 13C NMR (125 MHz,
CDCl3): d = 15.0, 21.2, 24.4, 27.9, 31.5, 33.1, 34.7, 58.1,
70.5, 90.3, 109.6, 125.0, 126.1, 127.6, 129.2, 130.0, 136.5,
149.9. GC-MS (tR = 10.70 min): m/z (%) = 284 (32) [M]+,
269 (38), 172 (45), 158 (100).
(12) The latter reaction predominates, when (8S,9E,11S)-10-
bromo-8-methyl-11-phenyl-2,5,7,12-tetraoxopentadeca-
9,14-diene is submitted to the protocol: Hohmann, A.
Dissertation; University of Düsseldorf: Germany, 2006.
(13) Confer: Trost, B. M.; Yang, H.; Probst, G. D. J. Am. Chem.
Soc. 2004, 126, 48.
Compound 1ae: 1H NMR (500 MHz, CDCl3): d = 1.25 (d,
J = 6.31 Hz, 6 H, CH3), 1.29 (m, 2 H, CH2Ph), 1.38 (m, 1 H,
CHCH3), 2.94 (q, J = 7.25 Hz, 1 H, 3-H), 4.75 (m, 2 H, 5-H),
5.13 (d, J = 10.40 Hz, 1 H, 2-H), 5.27 (t, J = 1.42 Hz 1 H,
C=CHH), 5.30 (t, J = 1.42 Hz, 1 H, C=CHH), 7.25 (m, 5 H,
arom. H). 13C NMR (125 MHz, CDCl3): d = 22.02, 27.96,
31.83, 35.68, 69.25, 86.53, 101.37, 124.51, 127.04, 129.65,
130.51, 141.74, 154.69. GC-MS (tR = 10.70 min): m/z (%) =
165 (10) [M – C4H3]+, 139 (12), 123 (85), 97 (100).
Compound 1ba: 1H NMR (500 MHz, CDCl3): d = 0.93 (d,
J = 6.31 Hz, 3 H, CH3), 2.63 (m, 2 H, CH2Ph), 2.87 (m, 1 H,
3-H), 3.68 (quint, J = 6.46 Hz, 1 H, 2-H), 4.21 (dq, Jd = 13.24
Hz, Jq = 2.21 Hz, 1 H, 5-H), 4.35 (dt, Jd = 13.24 Hz, Jt = 1.42
Hz, 1 H, 5-H), 4.79 (q, J = 2.21 Hz, 1 H, C=CHH), 4.78 (q,
(14) (a) Corey, E. J.; Cheng, X. M. The Logic of Chemical
Synthesis; Wiley: New York, 1989. (b) Modern Aldol
Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim,
2004. (c) For a different approach to b-hydroxycarboxylic
acids via diastereoselective conversions of dioxanones, see:
Herradón, B.; Seebach, D. Helv. Chim. Acta 1989, 72, 690.
(15) Typical Procedure for the Preparation of Compound 1aa
To a stirred solution of 3a (0.253 g, 1.00 mmol) in EtOH (10
mL) under an argon atmosphere were added PhB(OH)2 (4a,
0.183 g, 1.50 mmol), Cs2CO3 (0.489 g, 1.5 mmol), Pd(OAc)2
(5.5 mg, 0.0025 mmol), and tri-o-tolylphosphane (5.1 mg,
0.0025 mmol). After stirring for 24 h at 25 °C, the solvent
was removed in a rotary evaporator. The residue was
dissolved in a mixture of Et2O (40 mL) and deionized H2O
(40 mL). The aqueous layer was separated and extracted
with three 20 mL portions of Et2O. The combined organic
layers were dried with anhyd MgSO4, and the solvent was
evaporated under reduced pressure. The yellow-brown crude
product was purified by column chromatography on SiO2
(hexane–EtOAc, 6:1) to give yellowish, oily 1aa (0.153 g,
61%).
J = 2.05 Hz, 1 H, C=CHH), 7.17 (m, 5 H, arom. H). 13
C
NMR (125 MHz, CDCl3): d = 15.87 (cis), 20.30 (trans),
38.58, 51.75, 70.78, 81.29, 104.65, 115.70, 126.64, 128.81,
129.44, 130.05, 140.08, 152.57. GC-MS [tR = 10.70
min(trans), 6.71 min(cis)]: m/z (%) = 188 (5) [M]+, 143 (17),
129 (100), 97 (70).
Compound 1bb: 1H NMR (500 MHz, CDCl3): d = 0.96
(d, J = 6.31 Hz, 3 H, CH3), 2.41 (s, 3 H, SCH3), 2.58 (dd,
J = 14.03, 8.04 Hz, 2 H, CH2Ar), 2.81 (dd, J = 14.19, 6.13
Hz, 1 H, 3-H), 3.66 (quint, J = 6.38 Hz, 1 H, 2-H), 4.19 (q,
J = 2.21 Hz, 1 H, 5-H), 4.21 (q, J = 2.21 Hz, 1 H, 5-H), 4.78
(q, J = 2.36 Hz, 1 H, C=CHH), 4.87 (q, J = 2.21 Hz, 1 H,
C=CHH), 7.13 (m, 4 H, arom. H.). 13C NMR (125 MHz,
CDCl3): d = 11.12, 21.17, 38.03, 44.76, 70.85, 79.92,
114.87, 127.57, 128.73, 130.37, 138.39, 149.53. GC-MS
[tR = 10.70 min, 9.09 min(trans), 9.30 min(cis)]: m/z (%) =
234 (12) [M]+, 137 (100), 122 (8).
(16) Spectroscopic Data
Compound 1aa: 1H NMR (500 MHz, CDCl3): d = 2.38 (m,
2 H, CH2Ph), 2.93 (m, 1 H, 3-H), 4.41 (dq, Jd = 13.16 Hz,
Jq = 2.13 Hz, 1 H, 5-H), 4.54 (dt, Jd = 13.24 Hz, Jt = 1.66 Hz,
1 H, 5-H), 4.61 (d, J = 6.31 Hz, 1 H, 2-H), 4.75 (q, J = 2.36
Hz, 1 H, C=CHH), 4.90 (q, J = 2.05 Hz, 1 H, C=CHH), 7.19
(m, 10 H, arom. H). This cis-diastereomer differs in d = 4.63
(d, J = 1.90 Hz, 1 H, 2-H). 13C NMR (125 MHz, CDCl3):
d = 38.7, 53.0, 71.9, 86.4, 105.5, 115.7, 121.1, 126.6, 126.7,
128.0, 128.7, 129.6, 130.1, 139.7, 141.8, 151. 3. GC-MS (tR
= 9.71 min): m/z (%) = 250 (2) [M]+, 158 (43), 129 (100).
Compound (2R,3R)-1aa: [a]D20 –3.1 (c 1, CHCl3).
Compound 1ab: 1H NMR (500 MHz, CDCl3): d = 2.80 (m,
2 H, CH2Ar), 2.89 (m, 1 H, 3-H), 4.40 (m, 1 H, 5-H), 4.53
(m, 1 H, 5-H), 4.57 (d, J = 6.31 Hz, 1 H, 2-H), 4.76 (q,
J = 2.21 Hz, 1 H, C=CHH), 4.90 (q, J = 1.26 Hz, 1 H,
C=CHH), 7.22 (m, 9 H, arom. H). This cis-diastereomer
differs in d = 4.61 (d, J = 1.58 Hz, 1 H, 2-H). 13C NMR (125
MHz, CDCl3): d = 16.57, 32.94, 41.62, 71.83, 85.27, 105.52,
125.82, 126.77, 127.35, 128.73, 129.57, 130.08, 131.97,
130.06, 144.22, 152.99. GC-MS [tR = 12.06 min(trans); tR =
12.10 min(cis)]: m/z (%) = 296 (23) [M]+, 158 (50), 137
(100).
Compound 1bc: 1H NMR (500 MHz, CDCl3): d = 0.96 (d,
J = 6.31 Hz, 3 H, CH3), 2.41 (m, 1 H, CHHPh), 2.59 (m, 1
H, CHHPh), 2.81 (dd, J = 14.03, 6.46 Hz, 1 H, 3-H), 3.66
(quint, J = 6.31 Hz, 1 H, 2-H), 4.20 (dq, Jd = 13.24 Hz,
Jq = 2.21 Hz, 1 H, 5-H), 4.34 (dt, Jd = 13.03 Hz, Jt = 1.85 Hz,
1 H, 5-H), 4.76 (q, J = 2.21 Hz, 1 H, C=CHH), 4.78 (q,
J = 2.21 Hz, 1 H, C=CHH), 7.07 (m, 2 H, o-arom. H), 7.19
(m, 2 H, m-arom. H). 13C NMR (125 MHz, CDCl3):
d = 20.33, 37.92, 51.69, 70.81, 81.07, 104.89, 128.92,
130.77, 132.92, 138.55, 153.58. GC-MS [tR = 7.75
min(trans), 7.98 min(cis)]: m/z (%) = 222 (1) [M]+, 143 (70),
125 (100), 97 (75).
Compound 1ca: 1H NMR (500 MHz, CDCl3): d = 0.71 (d,
J = 6.94 Hz, 3 H, CH3), 0.78 (d, J = 6.94 Hz, 3 H, CH3), 1.48
(m, 1 H, CHCH3), 2.71 (m, 2 H, CH2Ph), 3.39 (m, 1 H, 3-H),
3.42 (m, 1 H, 2-H), 4.26 (m, 2 H, 5-H), 4.67 (d, J = 2.21 Hz,
Compound 1ac: 1H NMR (500 MHz, CDCl3): d = 2.90 (m, 2
Synlett 2009, No. 6, 968–972 © Thieme Stuttgart · New York