L. F. V. Pinto et al. / Tetrahedron Letters 50 (2009) 3446–3449
3449
Z- 5A
Z- 5
OR1
OR1
H
20.2 kcal/mol
[3,3]
N
N
OR1
NH
X
X
OR1
TS2
N
TS1
TS3
OR1
TS4
OR1
N
X
X
H
N
6
[3,3]
TS2
X = SO2Ar
R1= tert-butyl
X
X
27.8 kcal/mol
E- 5A
E- 5
Scheme 5.
2000, 65, 4938–4943; Suh, Y.-G.; Kim, S.-A.; Jung, J.-K.; Shin, D.-Y.; Min, K.-H.;
Koo, B.-A.; Kim, H.-S. Angew. Chem., Int. Ed. 1999, 38, 3545–3547.
Acknowledgements
5. Modern Allene Chemistry; Krauser, A., Stephen, A., Hashmi, K., Eds.; Wiley-VCH:
Weinheim, 2004.
6. Varala, R.; Nuvula, S.; Adapa, S. R. J. Org. Chem. 2006, 71, 8283–8286.
7. Imada, Y.; Yuasa, M.; Nakamura, I.; Murahashi, S. J. Org. Chem. 1994, 59, 2282–
2284.
8. For acetylenic sulfones, see: Back, T. G. Tetrahedron 2001, 57, 5263–5301;
Chen, Z.; Trudell, M. L. Synth. Commun. 1994, 24, 3149–3155; Bhattacharya,
S. N.; Josiah, B. M.; Walton, D. R. M. Organomet. Chem. Synth. 1971, 1,
145–149.
We thank Fundação para a Ciência e a Tecnologia (FC&T, Lisbon,
Portugal) for partial financial support (Project POCTI/QUI/36456).
Three of us (L.F.V.P., P.M.C.G., M.J.S.G.) are grateful for the award
of doctoral fellowships from FC&T. A.J.G. Bento is thanked for the
preparation of some starting materials.
Supplementary data
9. Typical experimental procedure: To
a 0.5 M solution of tert-butyl N-(O-
adamantyl)carbamate 2a (mp 99–100 °C), under N2 atmosphere in dry DMF,
were added NaH (1 equiv, 60% dispersion in oil) and after 5 min propargyl
bromide (1 equiv). The reaction was left at rt for 2 h. After work-up the
product was purified by flash chromatography to yield the hydroxylamine
derivative 3a as a yellowish oil (95%). Next this oil (1 equiv) was dissolved
in DCM, TFA (4 equiv) was added and the mixture was left to react at rt for
24 h, after which the reaction was stopped and compound 4a was obtained
as a white solid (77%), mp 50–51 °C (Et2O). Addition to sulfone: A DCM 0.4 M
solution of 4a (Table 1, entry 1) (20 mg) and ethynyl p-toluylsulfone
(1 equiv) were left to react at rt for 60 h, when only allene 6a (95%) and
enamine E-5a (5%) could be identified. After ca. 30 h of reaction enamine Z-
5a was clearly visible in the 1H NMR of the mixture, but no trace was
observed at the end. After completion of the reaction the solvent was
evaporated and the products were purified by flash chromatography (silica,
Et2O/n-hex, 1:4).Selected data: Z-5a, 1H NMR (400 MHz, CD2Cl2) d: 7.81 (2H,
d, J = 8.2 Hz), 7.35 (2H, d, J = 8.2 Hz), 6.59 (1H, d, J = 10.1 Hz), 5.43 (1H, d,
J = 10.1 Hz); E-5a, mp 138–9 °C; 1H NMR (CD2Cl2) d: 7.71 (2H, d, J = 8.2 Hz),
7.36 (1H, d, J = 12.7 Hz), 7.30 (2H, d, J = 8.2 Hz), 5.77 (1H, d, J = 12.7 Hz);
HRMS m/z: 386.17882 (M++1) (C22H28NO3S requires 386.17899); 6a, IR
Supplementary data associated with this article can be at
References and notes
1. Baum, R. M. Chem. Eng. News 2008, 42–46; Ritter, S. K. Ibidem 2008, 59–68.
2. Deffeyes, K. S. Beyond Oil—The View from Hubbert’s Peak; Hill and Wang:
London, 2006; Clark, J.; Macquarrie, D. Handbook of Green Chemistry and
Technology; Blackwell: London, 2002.
3. For reviews, see: Majundar, K. C.; Alam, S.; Chattopadhyay, B. Tetrahedron 2008,
64, 597–643; Nubbemeyer, U. Top. Curr. Chem. 2005, 244, 149–213; Castro, A.
M. M. Chem. Rev. 2004, 104, 2939–3002; Majumdar, K. C.; Ghosh, S.; Ghosh, M.
Tetrahedron 2003, 59, 7251–7271; Ito, H.; Taguchi, T. Chem. Soc. Rev. 1999, 28,
43–50; Enders, D.; Knopp, M.; Schiffers, R. Tetrahedron: Asymmetry 1996, 7,
1847–1882; Blechert, S. Synthesis 1989, 71–82; Ziegler, F. E. Chem. Rev. 1988,
88, 1423–1452; Lutz, R. P. Chem. Rev. 1984, 84, 205–246; Nubbemeyer, U. In The
Claisen Rearrangement: Methods and Applications; Hiersemann, M.,
Nubbemeyer, U., Eds.; Wiley-VCH: Weinheim, 2007; pp 461–523.
4. For 3-aza-Cope rearrangements, see: Weston, M. H.; Nakajima, K.; Back, T. G. J.
Org. Chem. 2008, 73, 4630–4637; Gonzalez, I.; Bellas, I.; Souto, A.; Rodriguez, R.;
Cruces, J. Tetrahedron Lett. 2008, 49, 2002–2004; Glória, P. M. C.; Prabhakar, S.;
Lobo, A. M. Tetrahedron Lett. 2008, 49, 7355–7357; Waetzig, S. R.; Tunge, J. A. J.
Am. Chem. Soc. 2007, 129, 4138–4139; Craig, D.; King, N. P.; Mountford, D. M.
Chem. Commun. 2007, 1077–1079; Hemming, K.; O’Gorman, P. A.; Page, M. I.
Tetrahedron Lett. 2006, 47, 425–428; Fiedler, D.; Van Halbeek, H.; Bergman, R.
G.; Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 10240–10252; Fiedler, D.;
Bergman, R. G.; Raymond, K. N. Angew. Chem., Int. Ed. 2004, 43, 6748–6751;
Zheng, J.-F.; Jin, L.-R.; Huang, P.-Q. Org. Lett. 2004, 6, 1139–1142; Davies, S. G.;
Garner, A. C.; Nicholson, R. L.; Osborne, J.; Savory, E. D.; Smith, A. D. Chem.
Commun. 2003, 2134–2135; Kang, J.; Kim, T. H.; Yew, K. H.; Lee, W. K.
Tetrahedron: Asymmetry 2003, 14, 415–418; Winter, R. F.; Rauhut, G. Chem. Eur.
J. 2002, 8, 641–649; Gomes, M. J. S.; Sharma, L.; Prabhakar, S.; Lobo, A. M.;
Glória, P. M. C. Chem. Commun. 2002, 746–747; Lindstrom, U. M.; Somfai, P.
Chem. Eur. J. 2001, 7, 94–98; McComsey, D. F.; Maryanoff, B. E. J. Org. Chem.
(neat) 1954 (C@C@C) cmꢀ1 1H NMR (CD2Cl2) d: 7.68 (2H, d, J = 7.8 Hz), 7. 37
;
(2H, d, J = 7.8 Hz), 7.29 (1H, d, J = 7.3 Hz), 5.48–5.43 (1H, m), 4.92–4.85 (2H,
m), 4.36 (1H, t, J = 6.0 Hz), 2.44 (3H, s), 2.10 (3H, br s), 1.69–1.50 (12H, m);
13C NMR d: 211.5; 8a, IR (neat) 1317, 1158 (SO2); 1H NMR (CDCl3) d: 9.12
(1H, d, J = 1.0 Hz), 8.77 (1H, dd, J1 = 5.0 Hz, J2 = 1.0 Hz), 8.20 (1H, d,
J = 8.0 Hz), 7.85 (2H, d, J = 8.0 Hz), 7.44 (1H, dd, J1 = 8.0 Hz, J2 = 5.0 Hz), 7.33
(2H, d, J = 8.0 Hz), 2.42 (3H, s); HRMS m/z: 233.05170 (M+) (C12H11NO2S
requires 233.05105).
10. For zwitterionic intermediates, reported earlier in low-temperature 3-aza Cope
rearrangements, see Refs.
3 (Nubbemeyer) and 4 (Weston et al.). In our
reactions the Z-5/E-5 isomerisation occurs after an irreversible protonation. It is
unlikely that the reaction conditions could result in the deprotonation of the
vinyl proton of the enamines, which would require a very strong base to be
present.
11. Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995–2001.
12. Evans, C. M.; Kirby, A. J. J. Chem. Soc., Perkin Trans. 2 1984, 1269–1275.