Published on Web 07/21/2009
Synthetic and Mechanistic Studies of Pd-Catalyzed C-H
Arylation with Diaryliodonium Salts: Evidence for a Bimetallic
High Oxidation State Pd Intermediate
Nicholas R. Deprez and Melanie S. Sanford*
Department of Chemistry, UniVersity of Michigan, 930 North UniVersity AVenue,
Ann Arbor, Michigan 48109
Received May 21, 2009; E-mail: mssanfor@umich.edu
Abstract: This contribution describes the substrate scope and mechanism of Pd-catalyzed ligand-directed
C-H arylation with diaryliodonium salts. This transformation was applied to the synthesis of a variety of
different biaryl products, using directing groups including pyridines, quinolines, pyrrolidinones, and
oxazolidinones. Electronically and sterically diverse aryl groups (Ar) were transferred in high yield using
iodine(III) reagents of general structure [Mes-I-Ar]BF4. Mechanistic investigations have been conducted
that establish the kinetic order of the catalytic reaction in each component, determine the resting state of
the catalyst and the iodine(III) reagent, quantify the electronic influence of the arylating reagent on the
reaction rate, and establish the intra- and intermolecular 1° H/D kinetic isotope effect. On the basis of
these studies, this transformation is proposed to proceed via turnover-limiting oxidation of the Pd dimer
[Pd(N∼C)(OAc)]2 (N∼C ) 3-methyl-2-phenylpyridine) by [Mes-I-Ph]BF4. This mechanism implicates a
bimetallic high oxidation state Pd species as a key catalytic intermediate. The significance of this and
other aspects of the proposed mechanism are discussed in detail.
Introduction
More recent efforts have begun to explore metal-catalyzed
C-H arylation as an alternative strategy for the construction
of biaryls.2-6 This approach is attractive because it allows direct
replacement of an Ar-H bond with an Ar-Ar′ bond, eliminat-
ing the need for a preinstalled functional group. In addition,
appropriate ligands can be used to direct highly site selective
C-H arylation within complex organic molecules. In recent
years, there has been a flurry of activity in this field, and ligand-
directed C-H arylation methods have been reported with
various late transition-metal catalysts.2-6
Our group has been particularly interested in developing Pd-
catalyzed ligand-directed C-H arylation reactions using
[Ar-IIII-Ar′]X reagents.5,6 These iodine(III) compounds were
selected on the basis of significant evidence that they could
Biaryls are important synthetic targets, as they serve as key
structural motifs of diverse natural products, pharmaceuticals,
agrochemicals, and conjugated materials. The most common
method for forming biaryl linkages involves transition metal-
catalyzed cross coupling (e.g., Suzuki-Miyaura, Stille, Hiyama,
Sonogashira, Kumada, and Negishi reactions).1 While these
transformations have found widespread application, they suffer
from the disadvantage that they require the use of two
prefunctionalized starting materials. As such, each coupling
reagent must be independently prepared, which adds one or more
additional steps to a synthetic sequence.
(1) (a) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (b) Farina,
V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1. (c)
Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457. (d) Suzuki, A.
J. Organomet. Chem. 1999, 576, 147. (e) Beletskaya, I. P.; Cheprakov,
A. V. Chem. ReV. 2000, 100, 3009. (f) Kotha, S.; Lahiri, K.; Kashinath,
D. Tetrahedron 2002, 58, 9633. (g) Denmark, S. E.; Sweis, R. F. Acc.
Chem. Res. 2002, 35, 835. (h) Muci, A. R.; Buchwald, S. L. Top.
Curr. Chem. 2002, 219, 131. (i) Negishi, E.; Anastasia, L. Chem. ReV.
2003, 103, 1979.
(3) For examples of ligand-directed Ar-H oxidative coupling, see: (a)
Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006,
128, 14047. (b) Xia, J. B.; You, S. L. Organometallics 2007, 26, 4869.
(c) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904.
(d) Li, B. J.; Tian, S. L.; Fang, Z.; Shi, Z. J. Angew. Chem., Int. Ed.
2008, 47, 1115. (e) Brasche, G.; Garc´ıa-Fortanet, J.; Buchwald, S. L.
Org. Lett. 2008, 10, 2207.
(4) For other proposals of Pd-catalyzed ligand-directed C-H arylation
via a PdII/IV mechanism, see ref 5a and: (a) Shabashov, D.; Daugulis,
O. Org. Lett. 2005, 7, 3657. (b) Zaitsev, V. G.; Shabashov, D.;
Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154. (c) Reddy, B. V. S.;
Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391. (d) Giri, R.;
Maugel, N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B.;
Yu, J. Q. J. Am. Chem. Soc. 2007, 129, 3510. (e) Chiong, H. A.; Pham,
Q. N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 9879. (f)
Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C. H. Angew.
Chem., Int. Ed. 2008, 47, 9462. (g) Yang, F.; Wu, Y.; Zhu, Z.; Zhang,
J.; Li, Y. Tetrahedron 2008, 64, 6782. (h) Yang, F.; Wu, Y.; Li, Y.;
Wang, B.; Zhang, J. Tetrahedron 2009, 65, 914.
(2) For recent reviews that discuss C-H arylation, see: (a) Campeau, L. C.;
Fagnou, K. Chem. Commun. 2006, 1253. (b) Daugulis, O.; Zaitsev,
V. G.; Shabashov, D.; Pham, Q. N.; Lazareva, A. Synlett 2006, 3382.
(c) Yu, J. Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041.
(d) Godula, K.; Sames, D. Science 2006, 312, 67. (e) Alberico, D.;
Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174. (f) Beccalli,
E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. ReV. 2007,
107, 5318. (g) Ackermann, L. Synlett 2007, 507. (h) Fairlamb, I. J. S.
Chem. Soc. ReV. 2007, 36, 1036. (i) Campeau, L. C.; Fagnou, K. Chem.
Soc. ReV. 2007, 36, 1058. (j) Catellani, M.; Motti, E.; Della Ca, N.
Acc. Chem. Res. 2008, 41, 1512. (k) Kakiuchi, F.; Kochi, T. Synthesis
2008, 3013. (l) Li, B. J.; Yand, S. D.; Shi, Z. J. Synlett 2008, 949.
(m) McGlacken, G. P.; Bateman, L. M. Chem. Soc. ReV. 2009, DOI:
10.1039/b805701j.
(5) (a) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am.
Chem. Soc. 2005, 127, 7330. (b) Deprez, N. R.; Kalyani, D.; Sanford,
M. S. J. Am. Chem. Soc. 2006, 128, 4972.
9
11234 J. AM. CHEM. SOC. 2009, 131, 11234–11241
10.1021/ja904116k CCC: $40.75 2009 American Chemical Society