C. D. Cox et al. / Bioorg. Med. Chem. Lett. 19 (2009) 2997–3001
3001
9. Compound 1:
b = 19.7509(4), c = 15.4723(3) Å, b = 91.3620(10)°, V = 4063.80(13) Å3, Z = 8,
Dx = 1.352 g cmÀ3
monochromatized radiation k(Mo) = 0.71073 Å,
= 0.09 mmÀ1, F(0 0 0) = 1744, T = 100 K. Data were collected on a Bruker
CCD diffractometer to a h limit of 28.31° which yielded 63565 reflections. There
are 10056 unique reflections with 5738 observed at the 2 level. The structure
was solved by direct methods (SHELXS-97, Sheldrick, G.M. Acta Crystallogr., 1990,
A46, 467–473) and refined using full-matrix least-squares on F2
C23H23N7O, Mr = 413.475, monoclinic, P21/c, a = 13.3019(2),
In conclusion, we found that N,N-disubstituted-1,4-diazepane
orexin receptor antagonists exist in a U-shaped conformation as
,
a result of favorable
p-stacking interactions and the adoption of
l
a twist-boat ring conformation. These effects result in a low-energy
conformation that resembles the bioactive conformation, reducing
the conformational entropy required to mold the structure into a
binding orientation. The lessons learned herein provide inspiration
for the synthesis of ‘bridged’ diazepane analogs in which a confor-
mational constraint is installed within the core to enforce or lock-
in the U-shaped conformation. Results of this effort will be the sub-
ject of a future report from our group.
r
(
SHELXL-97,
Sheldrick, G.M. SHELXL-97. Program for the Refinement of Crystal Structures. Univ.
of Göttingen, Germany). There are two independent molecules in the
asymmetric unit, related by a pseudo inversion center, with no significant
conformational differences between them. The final model was refined using
561 parameters and all 10056 data. All non-hydrogen atoms were refined with
anisotropic thermal displacements. The final agreement statistics are: R = 0.074
(based on 5738 reflections with I > 2
max = 0.12. The maximum peak height in a final difference Fourier map is
1.284 eÅÀ3
located within the quinazoline ring, and is without chemical
r(I)), wR = 0.165, S = 1.02 with (D/
r
)
,
Acknowledgments
significance. CCDC 723977 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The Cambridge
10. Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; John Wiley &
Sons: New York, 1994.
The authors would like to thank Ms. Nancy Tsou for growing
diffractable crystals of 1, Dr. Rodney Bednar, Ms. Wei Lemaire,
and Mr. Joe Bruno for determining binding potencies of key com-
pounds, and Dr. Charles Ross and Ms. Joan Murphy for high resolu-
tion mass spectral analyses.
11. It is well known that intermolecular p-stacking can influence supramolecular
structure in the solid state. See: Goswami, S.; Gupta, V. K.; Sharma, A.; Gupta, B.
D. Bull. Mater. Sci. 2005, 28, 725.
12. Kool, E. T. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 1.
13. (a) Burley, S. K.; Petsko, G. A. Science 1985, 229, 23; (b) Thomas, A.; Meurisse,
R.; Charloteaux, B.; Brasseur, R. Proteins 2002, 48, 628.
14. Desiraju, G. R.; Gavezzotti, A. J. Chem. Soc., Chem. Commun. 1989, 621.
15. Roesky, H. W.; Andruh, M. Coord. Chem. Rev. 2003, 236, 91.
16. (a) Kryger, G.; Silman, I.; Sussman, J. L. Structure 1999, 7, 297; (b) Rosenfeld, R.
J.; Garcin, E. D.; Panda, K.; Andersson, G.; Aberg, A.; Wallace, A. V.; Morris, G.
M.; Olson, A. J.; Stuehr, D. J.; Tainer, J. A.; Getzoff, E. D. Biochemistry 2002, 41,
13915.
17. Ala, P. J.; Gonneville, L.; Hillman, M.; Becker-Pasha, M.; Yue, E. W.; Douty, B.;
Wayland, B.; Polam, P.; Crawley, M. L.; McLaughlin, E.; Sparks, R. B.; Glass, B.;
Takvorian, A.; Combs, A. P.; Burn, T. C.; Hollis, G. F.; Wynn, R. J. Biol. Chem. 2006,
281, 38013.
18. Sinnokrot, M. O.; Sherrill, C. D. J. Phys. Chem. A 2006, 110, 10656.
19. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.;
Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M.
C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;
Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.;
Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. GAUSSIAN 98, Gaussian, Inc.: Pittsburgh, PA, 1998.
20. Sanders, J. The value provided in Ref. 18 is—4.1 kcal/mol, but was determined at
a slightly lower level of theory.
References and notes
1. (a) Bingham, M. J.; Cai, J.; Deehan, M. R. Curr. Opin. Drug. Dis. Dev. 2006, 9, 551;
(b) Roecker, A. J.; Coleman, P. J. Curr. Top. Med. Chem. 2008, 8, 977; (c) Boss, C.;
Brisbane-Roch, C.; Jenck, F.; Aissaoui, H.; Koberstein, R.; Sifferlen, T.; Weller, T.
Chimia 2008, 62, 974; (d) Boss, C.; Brisbane-Roch, C.; Jenck, F. J. Med. Chem.
2009, 52, 891.
2. (a) Whitman, D. B.; Cox, C. D.; Breslin, M. J.; Brashear, K. M.; Schreier, J. D.;
Bogusky, M. J.; Bednar, R. A.; Lemaire, W.; Bruno, J. G.; Hartman, G. D.; Reiss, D.
R.; Harrell, C. M.; Kraus, R. L.; Li, Y.; Garson, S. L.; Doran, S. M.; Prueksaritanont,
T.; Li, C.; Winrow, C. J.; Koblan, K. S.; Renger, J. J.; Coleman, P. J. ChemMedChem,
in press. doi: 10.1002/cmdc.200900069.; (b) These analogs were first disclosed
in: Brashear, K. M; Coleman, P. J.; Cox, C. D.; Smith, A. M.; Whitman, D. B. PCT
WO2007/126935 A2, 2007.; (c) Some of these results were disclosed in a recent
poster presentation: Breslin, M. J.; Cox, C. D.; Whitman, D. B.; Brashear, K. M.;
Bogusky, M. J.; Bednar, R. A.; Lemaire, W.; Hartman, G. D.; McGaughey, G.;
Reiss, D. R.; Harrell, C. M.; Winrow, C. J.; Koblan, K. S.; Renger, J. J.; Coleman, P. J.
Abstracts of Papers, 236th ACS National Meeting, Philadelphia, PA, United States,
August 17–21, 2008 (2008); MEDI 176.
3. It is known that restricted rotation around exocyclic partial double bonds to
heterocyclic six-membered rings can be observed on the NMR time scale; see
Kleinpeter, E.; Spitzner, R.; Schroth, W. Magn. Reson. Chem. 1987, 25, 688.
Additionally, conformational studies on compound 2 further supports hindered
rotation about the exocyclic bond to the quinazoline as a complicating factor in
the analysis of 1..
21. A search of the CSD for 1,4-diazepanes with no substitution on the ring carbons
and an exocyclic amide carbonyl at one of the ring nitrogens yields no hits. The
same search, but with the exocyclic amide constraint relaxed, retrieves several
structures, including ADASUU, ALAFUO, and QAFGUA in which the central ring
adopts a chair conformation. This analysis excludes organometallic complexes
in which the ring nitrogens are involved in a metal complex, forcing the
structure to adopt a boat conformation. See for example: Guo, Y. M.; Du, M.; Bu,
X.-H. J. Mol. Struct. 2002, 610, 27.
4. To determine the inherent isotropic shift of the C6 phenyl and aromatic methyl
protons, we synthesized and analyzed compound A in which no
p-stacking
interaction is available. The C6 phenyl and aromatic methyl protons appear at
7.23 and 2.43 ppm, respectively.
N
O
N
N
N
22. For instance, decreased molecular flexibility, as measured by the number of
rotatable bonds, may lead to improved bioavailability. See: Veber, D. F.;
Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med.
Chem. 2002, 45, 2615.
23. Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69,
5578.
7.87
7.23
A
7.42
Me
2.43
5. Molecular modeling studies utilized the conformational searching algorithm
implemented in Maestro v8.5 (mixed torsional/low-mode sampling) with a
constant dielectric constant of 4 in chloroform using the MMFFs force field. The
conformation pictured in Figure 1C is 0.2 kcal/mol higher in energy than the
global minima, a structure with a similar overall conformation, but in which
24. Interestingly, direct RCM of 11 is expected to result in a macrocycle with six
alkyl carbons bridging the aryl groups, rather than the five carbon bridge
present in 12, but this product is not observed. A well known side reaction in
difficult RCM reactions is olefin isomerization, possibly due to the presence of a
ruthenium hydride species formed by decomposition of the catalyst, see, for
example: (a) Hong, S. H.; Day, M. W.; Grubbs, R. H. J. Am. Chem. Soc. 2004, 126,
7414; (b) Hong, S. H.; Sanders, D. P.; Lee, C. W.; Grubbs, R. H. J. Am. Chem. Soc.
2005, 127, 17160. Apparently, the six carbon-bridged structure is unable to
form under these conditions. On the other hand, the five-carbon bridged
macrocycle is accessible, but its formation requires isomerization of one of the
double bonds prior to ring closing, likely accounting for the low yield for this
process. Attempts to cyclize analogs of 11 that would have led to a four- or
seven-carbon bridged structure (i.e., one carbon-extended or two carbon-
deleted versions of 11) led to no isolatable RCM products, further supporting
the conclusion that the five-carbon bridged structure is optimal.
the triazole ring is
support the existence of the triazole
p
-stacking with the quinazoline ring. There is no evidence to
-stacked conformation in solution by
p
either NOE correlations or resonance shifts.
6. McGaughey, G. B.; Gagne, M.; Rappe, A. K. J. Biol. Chem. 1998, 273, 15458.
7. Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem., Int. Ed. 2003, 42,
1211.
8. Examination of both computational and hand-held models of 2-rotamer B
indicate that geometrical constraints of this amide rotamer prevent the aryl
rings from getting into the close proximity seen in 2-rotamer A, in line with
NMR data suggesting a weaker p-stacking interaction in 2-rotamer B.