pubs.acs.org/joc
possess fungicidal activity,5b,5c and might be employed as
Copper-Catalyzed Cascade Addition/Cyclization: An
Efficient and Versatile Synthesis of N-Substituted
2-Heterobenzimidazoles
anti-ischemic agents;5a and some 2-phenoxylbenzimidazoles
(D) are claimed to be antiviral active compounds6 (Figure 1).
Although these N-substituted 2-heterobenzimidazoles
play an important role in biological and pharmaceutical
areas, efficient methods for the assembly of these molecules
are limited. The classical approaches to 2-aminobenzimida-
zoles employ o-phenylenediamine as precursors. For
example, Carpenter and co-workers recently synthesized
2-dimethylaminobenzimidazole from 2-amino-1-anilino-
4-nitrobenzene and phosgene iminium chloride;2d Sun et al.
reported o-phenylenediamines could react with isothiocyna-
nates to give 2-aminobenzimidazoles.7 Other approaches
include the SNAr reaction between 2-chlorobenzimidazoles
and N-nucleophiles,2b,2c,3a,8 Pd-catalyzed coupling of 2-ha-
lobenzimidazoles with amines,9 etc. However, these methods
might suffer from the limited availability of the starting
materials, harsh conditions, poor yields, narrow scopes,
and/or expensive catalysts. Recently, Batey and co-workers
reported Cu- or Pd-catalyzed intramolecular aryl guanidi-
nylation.10 Although it provided an efficient approach to
2-aminobenzimidazoles, the precursors o-haloguanidines
needed to be previously synthesized, and the diversity of
the substituents on the 2-position was limited (only for
certain aliphatic amino groups). The available methods that
lead to 2-imidazylbenzimidazoles5c,11 or 2-phenoxylbenzi-
midazoles6,12 are much rarer. Therefore, more efficient and
facile routes to these useful molecules under mild conditions
are needed.
Xin Lv and Weiliang Bao*
Department of Chemistry, Xixi Campus, Zhejiang University,
Hangzhou 310028, People’s Republic of China
Received April 8, 2009
A novel and efficient one-pot synthesis of various
N-substituted 2-heterobenzimidazoles has been devel-
oped. Through a Cu(I)-catalyzed cascade intermolecular
addition/intramolecular C-N coupling process, a wide
variety of 2-heterobenzimidazoles could be synthesized
from o-haloarylcarbodiimides and N- or O-nucleophiles.
1,2-Disubstituted benzimidazole derivatives have shown
their wide range of biological activities.1 Among them,
2-heterobenzimidazoles such as 2-aminobenzimidazoles,
2-imidazylbenzimidazoles, and 2-phenoxylbenzimidazoles are
important classes of heteroaromatics in biological chemistry
and pharmaceutical areas.2 For example, a number of
2-piperazinylbenzimidazoles (A) exhibit anti-inflammatory3b
and antihistaminic activities;3a certain N-aryl 2-amino-
benzimidazoles (B) were studied for their potential antista-
phylococcal activity;4 several 2-imidazylbenzimidazoles (C)
In the past decade, copper-mediated sp2 C-X (X = N, O,
S, etc.) bond formation reactions have drawn considerable
attention for their efficiency and low cost.13 And recently,
these copper-catalyzed strategies have been successfully
applied to the assembly of various heterocyclic compounds
(6) Fujishita, T.; Abe, K.; Naito, A.; Makino, I.; Matsumoto, H.;
Onodera, N.; Endoh, T.; Iwata, M. Wordwide Patent 2005,121,132, 2005;
Chem. Abstr. 2005, 144, 69,828.
(1) (a) Schnurch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M.
D.; Stanetty, P. Eur. J. Org. Chem. 2006, 3283. (b) Morphy, R.; Rankovic, Z.
J. Med. Chem. 2005, 48, 6523. (c) Hauel, N. H.; Nar, H.; Priepke, H.; Ries, U.;
Stassen, J.-M.; Wienen, W. J. Med. Chem. 2002, 45, 1757. (d) Saluja, S.; Zou,
R.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1996, 39, 881. (e) Gupta, R.
P.; Larroquette, C. A.; Agrawal, K. C. J. Med. Chem. 1982, 25, 1342.
(2) (a) Murru, S.; Patel, B. K.; Bras, J. L.; Muzart, J. J. Org. Chem. 2009,
74, 2217. (b) Martin, R. E.; Green, L. G.; Guba, W.; Kratochwil, N.; Christ,
A. J. Med. Chem. 2007, 50, 6291. (c) Bonfanti, J.-F.; Doublet, F.; Fortin, J.;
Lacrampe, J.; Guillemont, J.; Muller, P.; Queguiner, L.; Arnoult, E.; Gevers,
T.; Janssens, P.; Szel, H.; Willebrords, R.; Timmerman, P.; Wuyts, K.;
Janssens, F.; Sommen, C.; Wigerinck, P.; Andries, K. J. Med. Chem. 2007,
50, 4572. (d) Carpenter, A. J.; Al-Barazanji, K. A.; Barvian, K. K.; Bishop,
M. J.; Britt, C. S.; Cooper, J. P.; Goetz, A. S.; Grizzle, M. K.; Hertzog, D. L.;
Ignar, D. M.; Morgan, R. O.; Peckham, G. E.; Speake, J. D.; Swain, W. R.
Bioorg. Med. Chem. Lett. 2006, 16, 4994.
(7) Bendale, P. M.; Sun, C.-M. J. Comb. Chem. 2002, 4, 359.
(8) (a) Zhang, G. B.; Ren, P. D.; Gray, N. S.; Sim, T.; Liu, Y.; Wang, X.;
Che, J. W.; Tian, S.-S.; Sandberg, M. L.; Spalding, T. A.; Romeo, R.;
Iskandar, M.; Chow, D.; Seidel, H. M.; Karanewsky, D. S.; He, Y. Bioorg.
Med. Chem. Lett. 2008, 18, 5618. (b) Ellingboe, J. W.; Spinelli, W.; Winkley,
M. W.; Nguyen, T. T.; Parsons, R. W.; Moubarak, I. F.; Kitzen, J. M.;
Engen, D. V.; Bagli, J. F. J. Med. Chem. 1992, 35, 705.
(9) (a) Zheng, N.; Anderson, K. W.; Huang, X. H.; Nguyen, H. N.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 7509. (b) Wang, X. Q.;
Bhatia, P. A.; Daanen, J. F.; Latsaw, S. P.; Rohde, J.; Kolasa, T.; Hakeem, A.
A.; Matulenko, M. A.; Nakane, M.; Uchic, M. E.; Miller, L. N.; Chang, R. J.;
Moreland, R. B.; Brioni, J. D.; Stewart, A. O. Bioorg. Med. Chem. 2005, 13,
4667. (c) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem.
2003, 68, 2861. (d) Hong, Y. P.; Senanayake, C. H.; Xiang, T. J.; Vanden-
bossche, C. P.; Tanoury, G. J.; Bakale, R. P.; Wald, S. A. Tetrahedron Lett.
1998, 39, 3121.
(3) (a) Iemura, R.; Kawashima, T.; Fukuda, T.; Ito, K.; Tsukamoto, G. J.
Med. Chem. 1986, 29, 1178. (b) Kodama, T.; Takai, A.; Nakabayashi, M.;
Watanabe, L.; Sadaki, H.; Abe, N.; Kurokawa, A. Japanese Patent
50,126,682, 1975; Chem. Abstr. 1976, 84, 44,060.
(4) Ozden, S.; Atabey, D.; Yꢀıldꢀız, S.; Goker, H. Eur. J. Med. Chem. 2008,
43, 1390.
(10) Evindar, G.; Batey, R. A. Org. Lett. 2003, 5, 133.
(11) (a) Alcalde, E.; Dinares, I. J. Org. Chem. 1991, 56, 4233. (b) Alcalde,
E.; Dinares, I.; Frigola, J.; Jaime, C.; Fayet, J. P.; Vertut, M. C.; Miravitlles,
C.; Pius, J. J. Org. Chem. 1991, 56, 4223. (c) Alcalde, E.; Dinares, I.; Frigola,
J. Tetrahedron Lett. 1988, 29, 491.
(5) (a) Takase, Y.; Watanabe, N.; Matsui, M.; Ikuta, H.; Kimura, T.;
Saeki, T.; Adachi, H.; Tokumura, T.; Mochida, H.; Akita, Y. Worldwide
Patent 93,07,124, 1993; Chem. Abstr. 1993, 119, 203,427. (b) Takahashi, T.;
Kaneko, M.; Kido, Y.; Shibata, T. Japanese Patent 01,063,580, 1989; Chem.
Abstr. 1989, 111, 189,568. (c) Parsons, J. H.; Hunt, R. G.; Leach, S. E.;
Percival, A.; Buss, A. D.; Green, D. E.; Mellor, M. European Patent 247,760,
1987; Chem. Abstr. 1987, 108, 131,827.
(12) (a) Axe, F. U.; Bembenek, S. D.; Butler, C. R.; Edwards, J. P.;
Fourie, A. M.; Grice, C. A.; Savall, B. M.; Tays, K. L.; Wei, J. M. Worldwide
Patent 2005,012,297, 2005; Chem. Abstr. 2005, 142, 219,286. (b) Kulkarni,
M. V.; Patil, V. D. Arch. Pharm. 1981, 314, 440.
(13) For recent reviews, see: (a) Evano, G.; Blanchard, N.; Toumi, M.
Chem. Rev. 2008, 108, 3054. (b) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41,
1450. (c) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096.
5618 J. Org. Chem. 2009, 74, 5618–5621
Published on Web 06/16/2009
DOI: 10.1021/jo900743y
r
2009 American Chemical Society