reocenters. In this paper, we describe an organocatalytic
Michael reaction of thiols with trisubstituted nitroacrylates
to afford enantioenriched R-sulfenylated ꢀ-nitro esters,
valuable precursors for the synthesis of R-thio-ꢀ2,2-amino
acids.5b,c Notably, this sulfa-Michael reaction10 proceeds
efficiently even in the presence of 0.3 mol % of catalyst
conferring excellent enantioselectivities on the products (up
to 98% ee).
Scheme 1
.
General Strategies to Quaternary Stereocenters via
Conjugate Additions
Initially, we examined the feasibility of the strategy by
reaction of p-thiocresol 1a with R-phenyl-ꢀ-nitroacrylate 2a
in the presence of various acid-base bifunctional organo-
catalysts.11,12 We were gratified to observe that the reaction
took place cleanly and effectively, affording the desired
product 3a in high yield (96%) and enantioselectivity (75%
ee), using the 9-thiourea cinchona alkaloid catalyst 4 (Table
1, entry 1).13 With this promising result in hand, we then
In this context, the conjugate addition of highly active
trisubstituted carbon nucleophiles by metallic or organic
catalysis has been well documented (Scheme 1, eq 1);5a,7
however, an alternative strategy, the addition to ꢀ,ꢀ-
disubstituted R,ꢀ-unsaturated systems (Scheme 1, eq 2), has
been largely unexplored.8 There are three main reasons that
have, perhaps, precluded intensive research in this transfor-
mation, which include: (1) the intrinsic steric constraint and
poor reactivity, (2) the difficulty in the stereocontrol, and
(3) the reaction reversibility, especially in the case of
heteronucleophiles.9 Yet, such tri- or tetrasubstituted Michael
acceptors constitute another kind of valuable synthon for the
construction of both all-carbon and hetero-quaternary ste-
Table 1. Conjugated Addition of p-Thiocresol 1a to
R-Phenyl-ꢀ-nitroacrylate 2a with Organocatalyst 4 under
Various Conditionsa
(5) (a) Liu, T.-Y.; Li, R.; Chai, Q.; Long, J.; Li, B.-J.; Wu, Y.; Ding,
L.-S.; Chen, Y.-C. Chem.sEur. J. 2006, 13, 319. For seminal reports using
chiral auxiliaries, see: (b) Avenoza, A.; Busto, J. H.; Jime´nez-Ose´s, G.;
Peregrina, J. M. J. Org. Chem. 2006, 71, 1692. (c) Avenoza, A.; Busto,
J. H.; Jime´nez-Ose´s, G.; Peregrina, J. M. Org. Lett. 2006, 8, 2855. (d)
Edmonds, M. K.; Graichen, F. H. M.; Gardiner, J.; Abell, A. D. Org. Lett.
2008, 10, 885
.
entry
solvent
toluene
xylene
benzene
DCM
DCE
CHCl3
Et2O
CH3CN
DMF
time
yieldb (%)
eec (%)
(6) For selected reviews on catalytic asymmetric synthesis of quaternary
stereocenters: (a) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed.
1998, 37, 388. (b) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5363. (c) Trost, B. M.; Jiang, C. Synthesis 2006, 369.
(d) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2007,
1
2
3
4
5
6
7
8
<1 min
<1 min
<1 min
<1 min
<1 min
<1 min
<1 min
<1 min
1 h
96
94
98
96
93
90
95
87
83
95
95
93
98
75
77
80
74
71
78
78
11
0
5969. (e) Bella, M.; Gasperi, T. Synthesis 2009, 1583
.
(7) For a review, see: (a) Christoffers, J.; Baro, A. Angew. Chem., Int.
Ed. 2003, 42, 1688. For selected examples, see: (b) Taylor, M. S.; Jacobsen,
E. N. J. Am. Chem. Soc. 2003, 125, 11204. (c) Bella, M.; Jørgensen, K. A.
J. Am. Chem. Soc. 2004, 126, 5672. (d) Li, H.; Wang, Y.; Tang, L.; Wu,
F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed.
2005, 44, 105. (e) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto,
Y. J. Am. Chem. Soc. 2005, 127, 119. (f) Terada, M.; Ube, M. H.; Yaguchi,
Y. J. Am. Chem. Soc. 2006, 128, 1454. (g) Liu, T.-Y.; Long, J.; Li, B.-J.;
Jiang, L.; Li, R.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Org. Biomol. Chem.
2006, 4, 2097. (h) Jautze, S.; Peters, R. Angew. Chem., Int. Ed. 2008, 47,
9
10
11
12
13
benzene
benzene
benzene
benzene-Et2O
<5 min
20 min
5 h
88d
89e
88f
92e,g
9284
.
(8) Impressive progress in this endeavor has emerged very recently and
mainly focused on metal-catalyzed procedures with copper and rhodium
being the most prevalent, pioneered independently by the Hoveyda and
Alexakis groups; see the following. Copper-catalyzed asymmetric conjugate
addition of zinc reagents: (a) Wu, J.; Mampreian, D. M.; Hoveyda, A. H.
J. Am. Chem. Soc. 2005, 127, 4584. (b) Hird, A. W.; Hoveyda, A. H. J. Am.
Chem. Soc. 2005, 127, 14988. (c) Fillion, E.; Wilsily, A. J. Am. Chem.
Soc. 2006, 128, 2774. (d) Wilsily, A.; Fillion, E. Org. Lett. 2008, 10, 2801.
Copper-catalyzed asymmetric conjugate addition of Grignard reagents: (e)
Martin, D.; Kehrli, S.; d’Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis,
A. J. Am. Chem. Soc. 2006, 128, 8416. Copper-catalyzed asymmetric
conjugate addition of aluminum reagents: (f) d’Augustin, M.; Palais, L.;
Alexakis, A. Angew. Chem., Int. Ed. 2005, 44, 1376. (g) d’Augustin, M.;
Alexakis, A. Chem.sEur. J. 2007, 13, 9647. (h) Hawner, C.; Li, K.; Cirriez,
V.; Alexakis, A. Angew. Chem., Int. Ed. 2008, 47, 8211. (i) May, T. L.;
Brown, M. K.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2008, 47, 7358.
Rhodium-catalyzed asymmetric conjugate addition of organoboronic acids:
(j) Mauleo´n, P.; Carretero, J. C. Chem. Commun. 2005, 4961. (k) Shintani,
R.; Duan, W.-L.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 5628. (l) For
an organocatalytic intramolecular Stetter reaction, see: Kerr, M. S.; Rovis,
T. J. Am. Chem. Soc. 2004, 126, 8876.
4 h
a Unless noted, reactions were carried out with 1a (0.22 mmol), 2a (0.20
mmol), and 4 (0.1-5 mol %) in 1.0 mL of solvent at 8 °C. b Isolated yield.
c Determined by chiral HPLC. d 0.5 mol % of 4. e 0.3 mol % of 4. f 0.1
mol % of 4. g Conducted at -25 °C.
undertook further optimization experiments, and the results
are summarized in Table 1. As shown, most common
solvents are compatible with this Michael reaction, and all
reactions proceed effectively in high yields (83-98%).
However, in terms of enantioselectivity, less polar solvents
(71-80% ee, entries 1-7) are superior to polar solvents,
which caused a dramatic drop in enantiomeric excess (0 and
11% ee, entries 8 and 9). It is noteworthy that decreasing
the catalyst loading greatly improves the enantioselectivity
Org. Lett., Vol. 11, No. 17, 2009
3947