3650
M. J. Finerty et al. / Tetrahedron Letters 50 (2009) 3648–3650
5. (a) Hartley, J. A.; Hazrati, A.; Hodgkinson, T. J.; Kelland, L. R.; Khanim, R.;
Shipman, M.; Suzenet, F. Chem. Commun. 2000, 2325–2326; (b) LePla, R. C.;
Landreau, C. A. S.; Shipman, M.; Hartley, J. A.; Jones, G. D. D. Bioorg. Med. Chem.
Lett. 2005, 15, 2861–2864.
6. For an alternative approach, see: Casely-Hayford, M. A.; Pors, K.; James, C. H.;
Patterson, L. H.; Hartley, J. A.; Searcey, M. Org. Biomol. Chem. 2005, 3, 3585–
3589.
7. Strieter, E. R.; Bhayana, B.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 78–88
and references cited therein.
8. Bisamidation of 1,4-diiodobenzene under Cu catalysis has been observed, see:
Toto, P.; Gesquière, J.-C.; Deprez, B.; Willand, N. Tetrahedron Lett. 2006, 47,
1181–1186.
alternative strategies. The best yields were obtained by coupling
1,3- or 1,4-diaminobenzene with the requisite epoxy acids using
EDCI/HOBt or HATU as activators. The new bisepoxides displayed
good ISC efficiencies and appreciable in vitro cytotoxicities
although they were less potent than structurally related com-
pounds containing flexible hydrocarbon linkers. Future work will
focus on identifying the origin of these differences in potency,
and on designing new anti-cancer agents based upon this motif.
Acknowledgements
9. Bryant, H. J.; Dardonville, C. Y.; Hodgkinson, T. J.; Hursthouse, M. B.; Malik, K.
M. A.; Shipman, M. J. Chem. Soc., Perkin Trans.
1 1998, 1249–1255 and
references cited therein.
This work was supported financially by the University of War-
wick and CRUK (C2259/A3083). We thank the EPSRC National Mass
Spectrometry Service Centre for mass measurements, EPSRC (EP/
C007999/1) for the provision of additional mass spectrometers
and the NCI anti-cancer screening programme for the in vitro cyto-
toxicity data.
10. Amide (2S)-8 was prepared from (2S)-benzyl 2-hydroxy-3-methylbut-3-
enoate (Ref. 9) by heating in a sealed tube with 7 M ammonia in methanol
(40 °C, 16 h, 79%).
11. Selected spectroscopic data for 4a: mp = 144–144.5 °C. [
a]D +3.8 (c 1.1, CHCl3); IR
(film) 3338, 2974, 1693, 1611, 1543, 1127 cmꢁ1 1H NMR (400 MHz; CDCl3)
;
8.94 (2H, d, J 8.5 Hz, ArH), 8.36 (2H, dd, J 7.3, 1.2 Hz, ArH), 8.08 (2H, d, J 8.0 Hz,
ArH), 7.99 (2H, s, NH), 7.91 (2H, d, J 8.0 Hz, ArH), 7.64 (2H, m, ArH), 7.58–7.52
(8H, m, ArH), 5.33 (2H, s, H-2), 3.10 (2H, d, J 4.5 Hz, H-4), 2.87 (2H, d, J 4.5 Hz,
H-4), 1.60 (6H, s, CH3); 13C NMR (100 MHz; CDCl3) 165.9 (C), 164.6 (C), 134.2
(CH), 133.8 (C), 133.7 (C), 131.4 (C), 130.8 (CH), 128.6 (CH), 128.2 (CH), 126.5
(CH), 125.68 (C), 125.58 (CH), 124.5 (CH), 120.7 (CH), 76.2 (C-2), 56.2 (C-3),
53.7 (C-4), 17.6 (CH3). HRMS (ES+) calculated for C38H36N3O8 requires 662.2497
References and notes
1. For reviews, see: (a) Noll, D. M.; McGregor Mason, T.; Miller, P. S. Chem. Rev.
2006, 106, 277–301; (b) Schärer, O. D. ChemBioChem 2005, 6, 27–32; (c) Rajski,
S. R.; Williams, R. M. Chem. Rev. 1998, 98, 2723–2795.
[M+NH4þ]; found 662.2508; 4b: mp = 157.5–160.5 °C.
[
a
]
D = +33.8 (c 1.1,
CHCl3); IR (film) 3337, 2976, 1694, 1611, 1543, 1191 cmꢁ1
;
1H NMR (400 MHz;
CDCl3) 8.61 (2H, m, ArCH), 8.00 (2H, s, NH), 7.96 (2H, d, J 2.8 Hz, ArCH), 7.49–
7.48 (6H, m, ArCH), 7.36–7.34 (4H, m, ArCH), 5.32 (2H, s, H-2), 3.98 (6H, s,
ArOCH3), 3.08 (2H, d, J 4.4 Hz, H-4), 2.85 (2H, d, J 4.4 Hz, H-4), 2.67 (6H, s,
ArCH3), 1.59 (6H, s, CH3); 13C NMR (100 MHz; CDCl3) 165.7 (C), 164.5 (C), 155.8
(C), 134.3 (C), 133.7 (C), 133.2 (C), 128.0 (C), 127.8 (CH), 126.8 (C), 125.2 (CH),
123.7 (CH), 122.1 (CH), 120.6 (CH), 108.4 (CH), 76.3 (C-2), 56.2 (C-3), 55.5
(CH3), 53.5 (C-4), 20.1 (CH3), 17.7 (CH3). HRMS (ES+) calculated for C42H44N3O10
requires 750.3021 [M+NH4þ]; found 750.3019; 5: mp = 131–133 °C.
2. For recent illustrative examples, see: (a) Song, Z.; Weng, X.; Weng, L.; Huang, J.;
Wang, X.; Bai, M.; Zhou, Y.; Yang, G.; Zhou, X. Chem. Eur. J. 2008, 14, 5751–
5754; (b) Tiberghien, A. C.; Evans, D. A.; Kiakos, K.; Martin, C. R. H.; Hartley, J.
A.; Thurston, D. E.; Howard, P. W. Bioorg. Med. Chem. Lett. 2008, 18, 2073–2077;
(c) Duan, J.-X.; Jiao, H.; Kaizerman, J.; Stanton, T.; Evans, J. W.; Lan, L.; Lorente,
G.; Banica, M.; Jung, D.; Wang, J.; Ma, H.; Li, X.; Yang, Z.; Hoffman, R. M.;
Ammons, W. S.; Hart, C. P.; Matteucci, M. J. Med. Chem. 2008, 51, 2412–2420;
(d) Weng, X.; Ren, L.; Weng, L.; Huang, J.; Zhu, S.; Zhou, X.; Weng, L. Angew.
Chem., Int. Ed. 2007, 46, 8020–8023; (e) Woo, S.; Jung, J.; Lee, C.; Kwon, Y.; Na, Y.
Bioorg. Med. Chem. Lett. 2007, 17, 1163–1166.
3. For reviews, see: Hodgkinson, T. J.; Shipman, M. Tetrahedron 2001, 57, 4467–
4488; Casely-Hayford, M.; Searcey, M.. In Small Molecule DNA and RNA Binders;
Demeunynck, M., Bailly, C., Wilson, W. D., Eds.; Wiley-VCH: Weinheim, 2003;
Vol. 1, pp 676–696.
4. (a) Lown, J. W.; Majumdar, K. C. Can. J. Biochem. 1977, 55, 630–635; (b)
Armstrong, R. W.; Salvati, M. E.; Nguyen, M. J. Am. Chem. Soc. 1992, 114, 3144–
3145; (c) Fujiwara, T.; Saito, I.; Sugiyama, H. Tetrahedron Lett. 1999, 40, 315–
318; (d) Hartley, J. A.; Hazrati, A.; Kelland, L. R.; Khanim, R.; Shipman, M.;
Suzenet, F.; Walker, L. F. Angew. Chem., Int. Ed. 2000, 39, 3467–3470; (e)
Coleman, R. S.; Perez, R. J.; Burk, C. H.; Navarro, A. J. Am. Chem. Soc. 2002, 124,
13008–13017; (f) LePla, R. C.; Landreau, C. A. S.; Shipman, M.; Jones, G. D. D.
Org. Biomol. Chem. 2005, 3, 1174–1175; (g) Kelly, G. T.; Liu, C.; Smith, R.;
Coleman, R. S.; Watanabe, C. M. H. Chem. Biol. 2006, 13, 485–492.
[a] ;
D = +56.4 (c 1.2, CHCl3); IR (film) 3349, 2934, 1684, 1614, 1540 cmꢁ1 1H
NMR (400 MHz; CDCl3) 8.60 (2H, m, ArH), 8.13 (2H, s, NH), 7.94 (2H, d, J 2.5 Hz,
ArCH), 7.80 (1H, s, ArCH), 7.44 (2H, d, J 2.5 Hz, ArCH), 7.38–7.33 (6H, m,
6 ꢂ ArCH), 7.23–7.19 (1H, m, ArCH), 5.30 (2H, s, H-2), 3.95 (6H, s, ArOCH3), 3.09
(2H, d, J 4.4 Hz, H-4), 2.84 (2H, d, J 4.4 Hz, H-4), 2.66 (6H, s, ArCH3), 1.58 (6H, s,
CH3); 13C NMR (100 MHz; CDCl3) 165.7 (C), 164.7 (C), 155.7 (C), 137.6 (C),
134.3 (C), 133.1 (C), 129.5 (CH), 127.9 (C), 127.7 (CH), 126.8 (C), 125.2 (CH),
123.7 (CH), 122.1 (CH), 116.2 (CH), 111.5 (CH), 108.5 (CH), 76.3 (C-2), 56.2 (C-
3), 55.5 (CH3), 53.4 (C-4), 20.0 (CH3), 17.7 (CH3). HRMS (ES+) calculated for
C42H44N3O10 requires 750.3021 [M+NH4þ]; found 750.3025.
12. Hartley, J. A.; Berardini, M. D.; Souhami, R. L. Anal. Biochem. 1991, 193, 131–
134.
13. The importance of the naphthalene MeO– and Me– groups has been noted
previously, see: (a) Landreau, C. A. S.; LePla, R. C.; Shipman, M.; Slawin, A. M.;
Hartley, J. A. Org. Lett. 2004, 6, 3505–3509; (b) Ref. 4f.