LETTER
Synthesis of Alkoxy-Substituted Pyrimidine Derivatives
1061
M.; Reissig, H.-U. Angew. Chem. Int. Ed. 2007, 46, 1634;
Angew. Chem. 2007, 119, 1659. (k) Gwiazda, M.; Reissig,
H.-U. Synthesis 2008, 990.
Ph
Ph
N
N
a
N
N
(5) (a) Flögel, O.; Dash, J.; Brüdgam, I.; Hartl, H.; Reissig,
H.-U. Chem. Eur. J. 2004, 10, 4283. (b) Flögel, O.; Reissig,
H.-U. DE 103 36 497.8 A1, 2005. (c) Dash, J.; Lechel, T.;
Reissig, H.-U. Org. Lett. 2007, 9, 5541. (d) Lechel, T.;
Dash, J.; Reissig, H.-U. Eur. J. Org. Chem. 2008, 3647.
(6) Typical Procedure for the Synthesis of Enamide 4c
Trimethylsilylethoxyallene (2.45 g, 15.7 mmol) was
dissolved in Et2O (32 mL) and n-BuLi (6.90 mL, 17.2 mmol,
2.5 M in hexanes) was added at –40 °C. After 25 min at
–50 °C to –40 °C benzonitrile (2.40 mL, 23.5 mmol) was
added. After stirring for 4 h at this temperature benzoic acid
(5.74 g, 47.0 mmol, dissolved in 15 mL Et2O) was added,
and the mixture was warmed up over night to r.t. The
mixture was quenched with sat. aq NaHCO3 soln and
extracted three times with Et2O (30 mL). The combined
organic layers were dried with Na2SO4, filtered, and
concentrated. Column chromatography (SiO2, EtOAc–
hexane, 1:10) and subsequent recrystallization in hexane
provided 4c (2.14 g, 36%) as colorless solid (mp 65 °C).
Analytical Data for (E)-N-{3-Oxo-1-phenyl-2-[2-
(trimethylsilyl)ethoxy]but-1-enyl}benzamide (4c)
1H NMR (400 MHz, CDCl3): d = –0.15 (s, 9 H, SiMe3),
0.66–0.71 (m, 2 H, CH2Si), 2.40 (s, 3 H, CH3), 3.33–3.38 (m,
2 H, OCH2), 7.36–7.55, 7.95–7.98 (2 m, 10 H, Ph), 12.40 (br
s, 1 H, NH) ppm. 13C NMR (101 MHz, CDCl3): d = –1.7 (q,
SiMe3), 18.6 (t, CH2Si), 27.5 (q, CH3), 71.5 (t, OCH2), 127.8,
128.4, 128.68, 128.73, 132.3, 132.6, 133.7 (5 d, 2 s, Ph)*,
137.6, 143.3 (2 s, C=C), 165.2, 202.9 (2 s, C=O) ppm;
*overlapping Ph signals. IR (KBr): n = 3400 (NH), 3110–
2995 (=CH), 2960–2895 (CH), 1730–1580 (C=O, C=C)
cm–1. Anal. Calcd for C22H27NO3Si (381.5): C, 69.25; H,
7.13; N, 3.67. Found: C, 69.05; H, 7.08; N, 3.69.
73%
Ph
Ph
ONf
10
Ph
11
Scheme 4 Pd-catalyzed coupling reactions with pyrimidyl nonaflate
10. Reagents and conditions: a) Sonogashira reaction: Pd(OAc)2 (5
mol%), Ph3P (20 mol%), CuI (5 mol%), phenylacetylene, i-Pr2NH–
DMF (1:2), 70 °C, 3 h.
Ph
Ph
Ph
b
a
N
N
N
N
N
N
90%
66%
O
Ph
Ph
Ph
CO2H
OMe
OMe
H
OMe
7a
12
13
Scheme 5 Oxidation of pyrimidine derivative 7a. Reagents and
conditions: (a) SeO2 (2.0 equiv), dioxane, sealed tube, 80 °C, 2 d; (b)
NaClO2 (1.3 equiv), aq NaH2PO4–t-BuOH (1:1).
References and Notes
(1) (a) Karpov, A. S.; Müller, T. J. J. Synthesis 2003, 2815.
(b) Bevk, D.; Grošelj, U.; Meden, A.; Svete, J.; Stanovnik,
B. Helv. Chim. Acta 2007, 90, 1737. (c) Sagar, R.; Kim,
M.-J.; Park, S. B. Tetrahedron Lett. 2008, 49, 5080.
(d) Xie, F.; Zhao, H.; Zhao, L.; Lou, L.; Hu, L. Bioorg. Med.
Chem. Lett. 2009, 19, 275.
(2) (a) Brown, D. J. In Comprehensive Heterocyclic Chemistry,
Vol. 3; Katritzky, A. R.; Rees, C. W., Eds.; Pergamon Press:
Oxford, 1984, Chap. 2.13. (b) Eicher, T.; Hauptmann, S.
Chemie der Heterocyclen; Thieme: Stuttgart, 1994, 398.
(c) Gilchrist, T. L. Heterocyclenchemie; Neunhoeffer, H.,
Ed.; Wiley-VCH: Weinheim, 1995, 270. (d) Hoffmann,
M. G. In Houben-Weyl, Methoden der Organischen Chemie,
Vol. E9; Schaumann, E., Ed.; Thieme: Stuttgart, 1996.
(e) Angerer, S. Science of Synthesis, Vol. 16; Yamamoto, Y.,
Ed.; Thieme: Stuttgart, 2004, 379.
(7) Ferrini, S.; Ponticelli, F.; Taddei, M. Org. Lett. 2007, 9, 69.
(8) Typical Procedure for the Synthesis of Pyrimidine 7c
Enamide 4c (350 mg, 0.917 mmol) and NH4OAc (566 mg,
7.34 mmol) were placed in an ACE-sealed tube. The mixture
was dissolved in MeOH (5.0 mL) and stirred for 1 d at 65 °C.
After addition of H2O and CH2Cl2 (5.0 mL) the layers were
separated, and the aqueous layer was extracted twice with
CH2Cl2 (5.0 mL). The combined organic layers were dried
with Na2SO4, filtered, and concentrated. Column
chromatography (SiO2, EtOAc–hexane, 1:10) provided 7c
(285 mg, 86%) as colorless oil.
Analytical Data for 4-Methyl-2,6-diphenyl-5-[2-
(trimethylsilyl)ethoxy]pyrimidine (7c)
(3) Recent pyrimidine derivative syntheses starting from
enamides: (a) Barthakur, M. G.; Borthakur, M.; Devi, P.;
Saikia, C. J.; Saikia, A.; Bora, U.; Chetia, A.; Boruah, R. C.
Synlett 2007, 223. (b) Hill, M. D.; Movassaghi, M. Chem.
Eur. J. 2008, 14, 6836.
1H NMR (500 MHz, CDCl3): d = –0.08 (s, 9 H, SiMe3),
0.97–1.06 (m, 2 H, CH2Si), 2.64 (s, 3 H, CH3), 3.66–3.71 (m,
2 H, OCH2), 7.41–7.53, 8.16–8.19, 8.47–8.50 (3 m, 10 H,
Ph) ppm. 13C NMR (101 MHz, CDCl3): d = –1.6 (q, SiMe3),
18.9 (t, CH2Si), 19.6 (q, CH3), 71.1 (t, OCH2), 128.0, 128.3,
128.4, 129.1, 129.77, 129.84, 136.4, 137.8 (6 d, 2 s, Ph),
148.2 (s, C-5), 156.6, 158.7, 162.4 (3 s, C-2, C-4, C-6) ppm.
IR (film): n = 3090–2870 (=CH, CH), 1680–1540 (C=C,
C=N) cm–1. Anal. Calcd for C22H26N2OSi (362.5): C, 72.88;
H, 7.23; N, 7.73. Found: C, 72.63; H, 7.12; N, 7.78.
(9) Typical Procedure for the Synthesis of Pyrimidyl
Nonaflate 10
(4) For reviews on alkoxyallenes, see: (a) Zimmer, R. Synthesis
1993, 165. (b) Zimmer, R.; Khan, F. A. J. Prakt. Chem.
1996, 338, 92. (c) Reissig, H.-U.; Hormuth, S.; Schade, W.;
Okala Amombo, M. G.; Watanabe, T.; Pulz, R.; Hausherr,
A.; Zimmer, R. J. Heterocycl. Chem. 2000, 37, 597.
(d) Zimmer, R.; Reissig, H.-U. In Modern Allene Chemistry,
Vol. 2; Krause, N.; Hashmi, A. S. K., Eds.; Wiley-VCH:
Weinheim, 2004, 425. (e) Reissig, H.-U.; Zimmer, R.
Science of Synthesis, Vol. 44; Krause, N., Ed.; Thieme:
Stuttgart, 2007, 301. (f) Brasholz, M.; Reissig, H.-U.;
Zimmer, R. Acc. Chem. Res. 2009, 42, 45. For selected
recent applications developed by our group, see: (g) Al-
Harrasi, A.; Reissig, H.-U. Angew. Chem. Int. Ed. 2005, 44,
6227; Angew. Chem. 2005, 117, 6383. (h) Kaden, S.;
Reissig, H.-U. Org. Lett. 2006, 8, 4763. (i) Sörgel, S.;Azap,
C.; Reissig, H.-U. Org. Lett. 2006, 8, 4875. (j) Brasholz,
Pyrimidine 7c (285 mg, 0.786 mmol) was dissolved in a 1:2
mixture of TFA and CH2Cl2 (3.0 mL) and stirred for 30 min
at r.t. After addition of H2O and CH2Cl2 (5.0 mL) the layers
were separated, and the aqueous layer was extracted twice
with CH2Cl2 (8.0 mL). The combined organic layers were
dried with Na2SO4, filtered, and concentrated. The crude
product was dissolved in THF (5.0 mL) and NaH (94 mg
Synlett 2009, No. 7, 1059–1062 © Thieme Stuttgart · New York