Concave 1,10-Phenanthrolines as Ligands for Cyclopropanations
170 mg, max. 616 µmol of the monomer), barium hydroxide octa-
hydrate (299 mg, 928 µmol), and tetrakis(triphenylphosphane)pal-
ladium(0) (25 mg, 21 µmol) in 1,2-dimethoxyethane (6 mL) and
water (1.5 mL). The crude product was purified by column
(d, 6-CPhen*), 127.4 (2ϫs, 10a,10b-CPhen), 133.5 (d, 4-CPhen), 134.9
(d, 7-CPhen), 138.6 (d, 3-CPhen), 139.1 (d, CH=CH2), 139.2 (d,
CH=CH2), 144.9 (s, 4a-CPhen#), 146.4 (s, 6a-CPhen#), 151.2 (s, 2-
CPhen), 157.1 (s, 9-CPhen), 158.3 (s, 2-CAr), 161.5 (s, 1-CAr) ppm.
chromatography (silica gel, cyclohexane/ethyl acetate, 4:1, Rf
=
The assignments marked with #, * may be reversed. IR (KBr): ν
˜
1
0.53) to yield yellow crystals (105 mg, 164 µmol, 80%). H NMR
(600 MHz, CDCl3): δ = 1.30–1.47 (m, 8 H, CH2), 1.48–1.55 (m, 8
= 2925 (aliph. CH), 1608, 1580, 1476 (arom. C=C), 1279, 1182
(COC) cm–1. MS (EI, 70 eV): m/z = 600, 598 (7, 24) [M]+, 475, 473
H, CH2), 1.84 (mc, 4 H, OCH2CH2), 2.06 (mc, 4 H, =CHCH2), (34, 100) [M – C9H17]+, 308, 306 (12, 40) [M + H – C10H18
–
3
3
2
4.07 (t, J = 6.6 Hz, 4 H, OCH2), 4.94 (ddt, Jd = 10.2, Jd = 2.2,
C10H19O]+. MS (ESI, CHCl3/MeOH): m/z (%) = 601, 599 (45, 100)
4Jt = 1.2 Hz, 2 H, CH=CHHcis), 5.01 (ddt, Jd = 17.1, Jd = 2.1, [M + H]+. HR-MS (EI, 70 eV): calcd. for C38H4735ClN2O2:
3
2
4Jt = 1.6 Hz, 2 H, CH=CHHtrans), 5.83 (ddt, 3Jd = 17.1, 3Jd = 10.2,
598.3326; found 598.3360 (∆
=
–5.8 ppm), calcd. for
3Jt = 6.7 Hz, 2 H, CH=CH2), 7.10 (mc with d, J = 8.9 Hz, 4 H, C3713CH4735ClN2O2: 599.3359; found 599.3358 (∆ = 0.3 ppm).
3
3,5-CArH), 7.73 (s, 2 H, 5,6-CPhenH), 8.08 (d, 3J = 8.4 Hz, 2 H, 3,8-
2,21,23,42-Tetraoxa-1,22(1,3,4)-dibenzena-43(2,9)-1,10-phenanth-
3
CPhenH), 8.25 (d, J = 8.4 Hz, 2 H, 4,7-CPhenH), 8.42 (mc with d,
rolina-bicyclo[20.20.1]tritetracontaphan-11,32-diene (24b): 2,9-
Bis[2,4-bis(dec-9-enyloxy)phenyl]-1,10-phenanthroline (21b, 30 mg,
32 µmol) was dissolved in dry dichloromethane (36 mL). After ad-
dition of benzylidene-bis(tricyclohexylphosphane)dichlororuthe-
nium (Grubbs type I catalyst, 3 mg, 4 µmol, 12 mol-%), the solu-
tion was stirred at room temp. under nitrogen for 18 h and was
then filtered through basic aluminium oxide. The solvent was evap-
orated in vacuo and the crude product was purified by chromatog-
raphy (Chromatotron, 2 mm, silica gel, cyclohexane/ethyl acetate,
2:1, Rf = 0.58) to yield a yellow oil (20 mg, 22 µmol, 71%). 1H
NMR (500 MHz, CDCl3): δ = 0.80–0.91 (m, 4 H, CH2), 0.95–1.03
(m, 4 H, CH2), 1.22–1.54 (m, 32 H, CH2), 1.77–1.87 (m, 8 H,
OCH2CH2), 1.94–2.09 (m, 8 H, CH2CH=), 4.05 (mc, 8 H, OCH2),
4.98 (mc, 1.46 H, CH=CHHcis#), 5.06 (mc, 0.54 H,
CH=CHHtrans#), 5.34 (mc, 1.2 H, CH=CHHcis*), 5.42 (mc, 0.8 H,
3J = 8.9 Hz, 4 H, 2,6-CArH) ppm. 13C NMR (150 MHz, CDCl3): δ
= 26.1, 29.0, 29.1, 29.3, 29.4, 29.5 (t, CH2), 33.8 (t, CH2CH=), 68.2
(t, OCH2), 114.2 (t, =CH2), 114.9 (d, 3,5-CAr), 119.3 (d, 3,8-CPhen),
125.6 (d, 5,6-CPhen), 127.5 (s, 4a,6a-CPhen), 129.0 (d, 2,6-CAr), 132.0
(s, 1-CAr), 136.8 (d, 4,7-CPhen), 139.2 (d, CH=CH2), 146.1 (s,
10a,10b-CPhen), 156.5 (s, 2,9-CPhen), 160.6 (s, 4-CAr) ppm. IR
(KBr): ν = 2936 (aliph. CH), 1603, 1458 (arom. C=C), 1246, 1034
˜
(C–O–C) cm–1. MS (EI, 70 eV): m/z (%) = 640 (100) [M]+, 515 (40)
[C35H35N2O2]+, 501 (36) [C34H33N2O2]+, 377 (17) [C25H17N2O2]+,
364 (72) [C24H15N2O2]+. MS (ESI, CHCl3/MeOH): m/z (%) = 641
(100) [M + H]+. HR-MS (EI, 70 eV): calcd. for C44H52N2O2:
640.4029; found 640.4029 (∆
C4313CH52N2O2: 641.4063; found 641.4062 (∆
C44H52N2O2 (640.40): calcd. 82.46, 8.18, N
=
0.1 ppm), calcd. for
0.1 ppm).
4.37.
=
C
H
C44H52N2O2·0.9C4H8O2 (640.40 + 79.25): calcd. C 79.38, H 8.29,
N 3.89; found C 79.38, H 8.21, N 3.79.
4
3
CH=CHHtrans*), 6.55 (d, J = 2.1 Hz, 2 H, 2-CArH), 6.74 (dd, J
4
≈ 8.6, J = 2.2 Hz, 2 H, 6-CArH), 7.74 (s, 2 H, 5,6-CPhenH), 8.16
3
3
(d, J = 8.4 Hz, 2 H, 4,7-CPhenH), 8.24 (d, J = 8.4 Hz, 2 H, 3,8-
CPhenH), 8.28 (d, 3J = 8.6 Hz, 2 H, 5-CArH) ppm. The assignments
marked with #, * may be reversed. 13C NMR (125 MHz, CDCl3):
δ = 25.7, 25.8, 28.2, 28.5, 28.7, 29.0, 29.1, 29.2, 29.4, 29.9 (d, CH2),
32.2 (d, CH2CH=), 32.5 (d, CH2CH=), 68.0 (d, OCH2), 68.1 (d,
CH2CH=), 100.6 (d, 2-CAr), 106.3 (d, 6-CAr), 123.5 (s, 1-CAr), 124.8
(d, 3,8-CPhen), 125.5 (d, 5-CAr), 126.9 (s, 4a,6a-CPhen), 129.7 (d, 5,6-
CPhen), 130.0 (d, CH=CH), 130.2 (d, CH=CH), 134.7 (d, 4,7-
CPhen), 146.1 (s, 10a,10b-CPhen), 156.3 (s, 2,9-CPhen), 158.2 (s, 3-
2-[2,4-Bis(dec-9-enyloxy)phenyl]-9-chloro-1,10-phenanthroline (23):
In an attempt to synthesise 2,9-bis[2,4-bis(dec-9-enyloxy)phenyl]-
1,10-phenanthroline (21b) from 2,9-dichloro-1,10-phenanthroline
(10, 200 mg, 803 µmol) by Suzuki coupling with crude 2,4-bis(dec-
9-enyloxy)phenylboronic acid (17b, 600 mg, ca. 1.4 mmol) in the
presence of tetrakis(triphenylphosphane)palladium(0) (57 mg,
47 µmol) and barium hydroxide octahydrate (670 mg, 2.11 mmol)
(reaction and workup conditions as described for the synthesis of
21b from diiodide 12), the monoarylated phenanthroline 23 was
isolated by chromatography (Chromatotron, 2 mm, silica gel,
dichloromethane/ethyl acetate, 4:1, Rf = 0.18) as a colourless oil
C
Ar), 161.0 (s, 4-CAr) ppm. IR (KBr): ν = 2924, 2851 (aliph. CH),
˜
1609, 1580, 1487 (arom. C=C), 1262, 1100, 1022 (COC), 801 (2
neighbouring arom. CH) cm–1. MS (ESI, CHCl3/MeOH): m/z (%)
= 893.6 (100) [M + H]+, 879.6 (40) [M + H – CH2]+. MS (EI,
70 eV): m/z (%) = 892 (11) [M]+, 799 (9) [M – C7H13]+, 97 (100)
[C7H13]+. HR-MS (ESI, CHCl3/MeOH): C60H80N2O4 (892.61),
calcd. for C60H80N2O4 + H+: 893.6191; found 893.6249 (∆ =
6.5 ppm), calcd. for C5913CH80N2O4 + H+: 894.6224; found
894.6182 (∆ = 4.7 ppm).
1
(95 mg, 159 µmol, 34%). H NMR (500 MHz, CDCl3): δ = 1.21–
1.52 (m, 20 H, CH2), 1.80 (mc, 4 H, OCH2CH2), 1.98 (mc, 2 H,
CH2CH=), 2.06 (mc, 2 H, CH2CH=), 4.02 (t, 3J ≈ 6.5 Hz, 2 H,
OCH2), 4.04 (t, 3J ≈ 6.5 Hz, 2 H, OCH2), 4.91 (ddt, 3Jd = 10.2 Hz,
2Jd = 2.2 Hz, 4Jt = 1.1 Hz, 1 H, CH=CHHcis), 4.94 (ddt, 3Jd
≈
2
4
10.2 Hz, Jd = 2.2 Hz, Jt = 1.2 Hz, 1 H, CH=CHHcis), 4.96 (ddt,
3Jd = 17.1 Hz, 2Jd = 2.1 Hz, 4Jt = 1.6 Hz, 1 H, CH=CHHtrans), 5.01
(ddt, 3Jd = 17.1 Hz, 2Jd = 2.0 Hz, 4Jt = 1.6 Hz, 1 H, CH=CHHtrans), 4,15-Dioxa-1,3(1,4)-dibenzena-2(2,9)-1,10-phenanthrolina-cyclopen-
5.78 (ddt, 3Jd = 17.0 Hz, 3Jd = 10.2 Hz, 3Jt = 6.7 Hz, 1 H,
tadecaphan-7-ene (25a): 2,9-Bis[4-(hex-5-enyloxy)phenyl]-1,10-
phenanthroline (22a, 80.0 mg, 152 µmol) was dissolved in dry
3
3
CH=CH2), 5.82 (ddt, 3Jd = 17.0 Hz, Jd = 10.2 Hz, Jt = 6.7 Hz, 1
H, CH=CH2), 6.56 (t, J = 2.3 Hz, 1 H, 3-CArH), 6.71 (dd, 3J = dichloromethane (160 mL) under nitrogen. After addition of
4
8.6 Hz, 4J = 2.3 Hz, 1 H, 5-CArH), 7.58 (d, 3J = 8.3 Hz, 1 H, 8-
benzylidene-bis(tricyclohexylphosphane)dichlororuthenium
CPhenH), 7.71 (d, 3J = 8.7 Hz, 1 H, 5-CPhenH), 7.80 (d, 3J = 8.7 Hz, (Grubbs type I catalyst, 14.5 mg, 18.5 µmol, 12 mol-%), the solu-
1 H, 6-CPhenH), 8.16 (d, 3J = 8.4 Hz, 1 H, 7-CPhenH), 8.17 (d, J = tion was stirred at room temp. for 7 d. TLC still showed starting
3
8.5 Hz, 1 H, 3-CPhenH), 8.29 (d, 3J = 8.6 Hz, 1 H, 6-CArH), 8.30 (d,
3J = 8.5 Hz, 1 H, 4-CPhenH) ppm. 13C NMR (150 MHz, CDCl3): δ
material, so benzylidene-bis(tricyclohexylphosphane)dichlororu-
thenium (Grubbs type I catalyst, 8.0 mg, 10 µmol, 7 mol-%) was
= 26.1 (d, CH2), 26.2 (d, CH2), 28.9 (d, CH2), 28.9 (d, CH2), 29.0 added again and the solution was stirred at room temp. for another
(d, CH2), 29.1 (d, CH2), 29.2 (d, CH2), 29.2 (d, CH2), 29.3 (d, 4 d. The solution was filtered through basic aluminium oxide and
CH2), 29.4 (d, CH2), 29.4 (d, CH2), 29.5 (d, CH2), 33.7 (d, the solvent was evaporated in vacuo. The crude product was par-
CH2CH=), 33.8 (d, CH2CH=), 68.2 (d, OCH2), 68.8 (d, OCH2),
100.4 (d, 3-CAr), 106.3 (d, 5-CAr), 114.1 (2ϫt, =CH2), 122.4 (s, 4-
CAr), 123.9 (d, 8-CPhen), 124.7 (d, 5-CPhen*), 125.5 (d, 6-CAr), 126.9
tially purified by chromatography (Chromatotron, 2 mm, silica gel,
cyclohexane/ethyl acetate, 2:1, Rf = 0.58) to yield several fractions
that contained both starting material and product. The characteri-
Eur. J. Org. Chem. 2009, 2328–2341
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2339