To determine the statistical significance Fisher’s exact test was
used. The test substance is considered positive when statistically
significant increases in aberration-bearing cells are observed at two
consecutive dose-levels or at the higher dose-level and exceed the
historical control mean values.
7 For some examples of the effect of cytochrome P450-deppendent
metabolic process on lignans, see: (a) B. K. Sinha, H. M. Eliot and
B. Kalayanaraman, FEBS Lett., 1988, 227, 240; (b) H. B. Niemeyer
and M. Metzler, Anal. Technol. Life Sci., 2002, 777, 321–327.
8 K. K. Wolf, S. G. Wood, J. L. Allard, J. A. Hunt, N. Gorman, B.
W. Walton-Strong, J. G. Szakacs, S. X. Duan, Q. Hao, M. H. Court,
L. L. Von Moltke, D. J. Greenblatt, V. Kostrubsky, E. H. Jeffery, S. A.
Wrighton, F. J. Gonzalez, P. R. Sinclair and J. F. Sinclair, Drug Metab.
Dispos., 2007, 35, 1223–1231.
Conclusions
9 E. L. Cavalieri, K. M. Li, N. Balu, M. Saeed, P. Devanesan, S.
Higginbotham, J. Zhao, M. L. Gross and F. G. Rogan, Carcinogenesis,
2002, 23, 1071–1077.
In this paper we have described a general and selective procedure
for the de-O-methylation of guaiacyl monolignols, lignans and
neolignans to the corresponding catechol derivatives by a modifi-
cation of the Quideau demethylation reaction20 here performed in
an aqueous (green) solvent system. To the best of our knowledge,
this is the first example of an oxidative system able to mimic one of
the activities of cytochrome P-450 enzymes in the metabolic path-
way of the guaiacyl moiety in the cell. Reactions proceeded with
satisfactory conversions of substrate and yield of products, even
for such recalcitrant substrates as neolignans. In some selected
examples, the novel catechol derivatives were also acetylated to
afford the corresponding esters as useful references to compare the
biological activity with parent compounds. The catechols and the
acetylated derivatives were evaluated for the toxicity in comparison
to the parent natural compounds. The results obtained indicate
that the presence of the catechol moiety sharply enhances the clas-
togenic potential, the cytotoxicity and the modulation of cell cycle
progression. In contrast, acetylated derivatives showed a markedly
reduced clastogenic activity, but preserving the cytotoxicity and
the modulation of cell cycle progression. The only exception to
this general trend was the catechol derivative of a-conidendrin,
for which cytotoxicity was not observed, thus conferring the
property to induce a new effect, the enderoduplication process.
Thus, despite the in vitro antioxidant activity usually described for
catechol derivatives, our results show for the first time the gen-
eration of a clastogenic potential (e.g. induction of chromosomal
aberrations), highly indicative of a long-term genetic and cancer
risk.
10 (a) P. Arivazhagan, K. Ramanathan and C. Panneerselvam, Experi-
mental Gerontology, 2001, 37, 81–87; (b) O. Attanasi, P. Filippone, C.
Fiorucci, R. Amorati, G. F. Peduli, L. Valgimigli and R. Saladino, J.
Chem. Soc. Perkin Trans 2, 2001, 2142–2146.
11 H. J. Suh, M.-S. Chung, Y.-H. Cho, J.-W. Kim, D.-H. Kim, K.-W. Han
and C.-J. Kim, Food Additives & Contamin, 2005, 22, 1176–1188.
12 (a) For the effect of a tertiary hydroxyl group on the main lignin
structure see S. Yamauchi, T. Ina, T. Kirikishira and T. Masuda, Biosci.
Biotechnol. Biochem., 2004, 68, 183–192; (b) S. Yamauchi, Y. Hayashy,
T. Kirikihira and T. Masuda, Biotechnol. Biochem., 2005, 69, 581–
582. For the effect of benzylic oxygen on antioxidant activity, see:
S. Yamauchi, H. Hayashi, Y. Nakashima, T. Kirikihira, K. Yamada and
T. Masuda, J. Nat. Prod., 2005, 68, 1459–1470. For the effect of benzylic
oxygen on antimicrobial activity, see: K. Akiyama, M. Maruyama,
S. Yamauchi, Y. Nakashima, T. Nakato, R. Tago, T. Sugahara, T.
Kishida and Y. Koba, Biosci., Biotechnol., Biochem., 2007, 71, 1745–
1751.
13 (a) C. Crestini, P. Pro, V. Neri and R. Saladino, Bioorg. Med.
Chem, 2005, 13, 2569–2578; (b) C. Crestini, M. C. Caponi, D. S.
Argyropoulous and R. Saladino, Bioorg. Med. Chem, 2006, 14, 5292–
5302; (c) R. Saladino, C. Fiani, C. Crestini, G. D. S. Argyropoulous, S.
Marini and M. Coletta, J. Nat. Prod., 2007, 70, 39–42.
14 R. Saladino, C. Fiani, M. C. Belfiore, G. Gualandi, S. Penna and P.
Mosesso, Bioorg. Med. Chem., 2005, 13, 5949–5960.
15 P. Jancova, E. Anzenbacherova, B. Papouskova, K. Lemr, P. Luzna, A.
Veinlichova, P. Anzenbacher and S. Vilim, Drug Met. Disp., 2007, 35,
2035–2039.
16 (a) S. Yamauchi, T. Sugahara, Y. Nakashima, K. Abe, Y. Hayashi, K.
Akiyama, T. Kishida and M. Maruyama, Biosci. Biotechnol. Biochem.,
2006, 70, 2942–2947; (b) S. Yamauchi, T. Sugahara, Y. Nakashima,
A. Okada, K. Akiyama, T. Kishida, M. Maruyama and T. Masuda,
Biosci. Biotechnol. Biochem., 2006, 70, 1934–1940.
17 C. Hartmann and V. Mayer, Chem. Ber., 1893, 26, 1727–1732.
18 M. Frigerio, M. Santagostino and S. Sputore, J. Org. Chem., 1999, 64,
4537–4538.
19 S. Quideau, L. Pouysegu, D. Deffieux, A. Ozanne, J. Gagnepain,
I. Fabre and M. Oxoby, Arkivoc, 2003, VI, 106–119a nd references
therein.
Acknowledgements
20 A. Ozanne, L. Pouyse´gu, D. Depernet, B. Francois and S. Quideau,
Org. Lett., 2003, 5, 2903–2906.
21 R. Bernini, E. Mincione, M. Barontini and F. Crisante, J. Agric. Food
Chem., 2008, 56, 8897–8904.
22 (a) R. Bernini, E. Mincione, M. Barontini, and F. Crisante, It. Pat.,
MI2007A001110, 2007; (b) R. Bernini, E. Mincione, M. Barontini and
F. Crisante, PCT 2008/110908, 2008.
The authors like to thank Interuniversity Consortium Chemistry
for the Environment (INCA) for financial support. PNR-FIRB,
ASI and EU COST CM07035 System Chemistry are also acknowl-
edged.
23 P. C. Eklund, A. I. Riska and R. E. Sjo¨holm, J. Org. Chem., 2002, 67,
7544–7546.
References
24 S. C. Wilson, P. W. Howard, S. M. Forrow, J. A. Hartley, L. J. Lesley,
T. C. Terence, L. R. Kelland, R. Lloyd and D. E. Thurston, J. Med.
Chem., 1999, 42, 4028–4041.
25 S. Galland, N. Mora, M. A. Vian, N. Rakotomanomana and O.
Dangles, J. Agric. Food Chem., 2007, 55, 7573–7579.
26 (a) See for example:N. J. Cartwright and A. R. W. Smith, Biochem.
J., 1967, 102, 826–841; (b) V. Veturi, F. Zennaro, G. Degrassi, B. C.
Okeke and C. V. Bruschi, Microbiol., 1988, 144, 965–973; (c) E. M.
T. El-Mansi and S. C. K. Anderson, World J. Microbiol. Biotechnol.,
2004, 20, 827–832; (d) M. Nishimura, I. Daisaku and J. Davies, Biosci.,
Biotechnol., Biochem., 2006, 70, 2316–2319.
27 B. Holmbom, C. Eckerman, P. Eklund, J. Hemming, L. Nisula, M.
Reunanen, R. Sjo¨holm, A. Sunderg and S. Willfo¨r, Phytochem. Rev,
2003, 2, 331–340.
1 D. C. Ayres, and J. D. Loike, in Lignans: Chemical, biological and
clinical properties, Cambridge University Press, 1990.
2 See as a general review: T. Osawa, in Phenolic Compounds in Food
and their Effect on Health, ed. M. T. Huang, C. T. Ho and C. Y. Lee,
American Chemical Society: Washington, D.C., 1992, pp. 135–149.
3 (a) J. L. Charlton, J. Nat. Prod., 1998, 61, 1447–1451; (b) S.-Y. Li,
M.-D. Wu, C.-W. Wang, Y.-H. Kuo, R.-L. Huang and K.-H. Lee,
Chem. Pharm. Bull, 2000, 48, 1992–1993.
4 H. L. Teles, J. P. H. Hemerly, P. M. Paoletti, J. R. C. Pandolfi, A. R.
Araujo, S. R. Valentini, H. C. M. Jung, V. Da, S. Bolzani and H. S.
Dulce, Nat. Prod. Res., 2005, 19, 319–323.
5 K. C. G. Jeng and R. C. W. Hou, Curr. Enzyme Inhib., 2005, 1, 11–20.
6 (a) P. C. Eklund, O. K. La˚ngvik, J. P. Wa¨rna˚, T. O. Salmi, S. M. Willfo¨r
and R. E. Sjoholm, Org. Biomol. Chem., 2005, 3, 3336–3347; (b) S.
Yamauchi, Y. Hayashi, Y. Nakashima, T. Kirikihira, K. Yamada and
T. Masuda, J. Nat. Prod., 2005, 68, 1459–1470.
28 For example for oligomers lignans see: F. Kawamura, M. Miyachi, S.
Kawai and H. Ohashi, J. Wood Sci., 1998, 44, 47–55.
2376 | Org. Biomol. Chem., 2009, 7, 2367–2377
This journal is
The Royal Society of Chemistry 2009
©