6514
S. Hussain et al. / Tetrahedron Letters 53 (2012) 6512–6515
Table 2
O
S
O
O
VO2F(dmpz)2 catalyzed oxidation of organic sulfides with H2O2 in CH3CN
H2O2
V
F
dmpz
R1
R2
dmpz
O
VO2F(dmpz)2, H2O2
S
CH3CN, 0-5 oC
S
R1
R2
R1
R2
H2O
R2
S
Entry
1
Substrate
Time (h)
Sulfoxidea
_
R1
O
O
O
..
S
S
O
R2
O
5
95,90b,86c,97d
CH3
O
V
F
V
F
dmpz
dmpz
R1
dmpz
dmpz
S
S
2
3
5
93
87
Scheme 2. Plausible mechanism of oxidation of sulfide.
C6H13
5.5
S
S
C17H35
C11H23
4
5
6.5
6
95
87
thereby rendering the VO2F(dmpz)2–H2O2 system efficacious, as
observed in the present study.
H7C3
In conclusion, a new penta-coordinated VO2F(dmpz)2 catalyst
has been developed and fully characterized. It efficiently catalyzes
the oxidation of alkyl as well as aryl sulfides by H2O2 also in the
presence of oxidation prone functional groups such as C@C, –CN,
and –OH. The selective oxidation of DMS to DMSO is industrially
important in the context of ranitidine hydrochloride. Refractory
sulfides are also capable of being oxidized quite effectively which
are especially relevant in desulfurization of transportation fuel.
The recyclability of the catalyst offers a potentially competitive
practical process.
S
S
6
7
3
97
86
6.5
C11H23
S
8
4.5
85
MeO
OH
S
9
4.5
2
82
85
S
CN
10
88e
75e
Acknowledgments
11
12
5
8
S
We thank Dr. Gopal Das of IIT Guwahati for his help in solving
X-ray structure. D.T and S.K.B are grateful to CSIR, New Delhi for
research fellowships.
S
13
14
15
12
0.5
5
80e
99
S
S
References and notes
CH3
S
H3C
O2N
O2N
1. (a) Fernandez, I.; Khiar, N. Chem. Rev. 2003, 103, 3651–3706; (b) Kowalski, P.;
Mitka, K.; Ossowska, K.; Kolarska, Z. Tetrahedron 2005, 61, 1933–1953.
2. (a) Wang, S. H.; Mandimutsira, B. S.; Todd, R.; Ramdhanie, B.; Fox, J. P.;
Goldberg, D. J. Am. Chem. Soc. 2004, 126, 18–19; (b) Kar, G.; Saikia, A. K.; Bora,
U.; Dehury, S. K.; Chaudhuri, M. K. Tetrahedron Lett. 2003, 44, 4503–4505; (c)
Cavazzini, M.; Pozzi, G.; Quici, S.; Shepperson, I. J. Mol. Catal. A: Chem. 2003, 204,
433–441; (d) Sivasubramanian, V. K.; Ganesan, M.; Rajagopal, S.; Ramaraj, R. J.
Organomet. Chem. 2002, 67, 1506–1514.
CH3
35
S
16
6
30
3. Hajipour, A. R.; Kooshki, B.; Ruoho, A. E. Tetrahedron Lett. 2005, 46, 5503–5506.
4. Saul, W.; Christopher, I. J. Am. Chem. Soc. 1983, 105, 7755–7757.
5. and reference cited therein (a) Das, S. P.; Baruah, J. J.; Chetry, H.; Islam, N. S.
Tetrahedron Lett. 2012, 53, 1163–1168; (b) Jeyakumar, K.; Chakravarthy, R. D.;
Chand, D. K. Catal. Commun. 2009, 10, 1948–1951; (c) Bakavoli, M.; Kakhky, A.
M.; Shiri, A.; Ghabdian, M.; Davoodnia, A.; Eshghi, H. M. Chin. Chem. Lett. 2010,
21, 651–655; (d) Pordea, A.; Mathis, D.; Ward, T. R. J. Organomet. Chem. 2009,
694, 930–936; (e) Betz, D.; Herrmann, W. A.; Kühn, F. E. J. Organomet. Chem.
2009, 694, 3320–3324; (f) Buonomenna, M. G.; Figoli, A.; Spezzano, I.; Davoli,
M.; Drioli, E. Appl. Catal. B: Environ. 2008, 80, 185–194; (g) Qiu, C. J.; Zhang, Y.
C.; Gao, Y.; Zhao, J. Q. J. Organomet. Chem. 2009, 694, 3418–3424; (h) Hida, T.;
Nogusa, H. Tetrahedron 2009, 65, 270–274; (i) Rostami, A.; Akradi, J. Tetrahedron
Lett. 2010, 51, 3501–3503; (j) Panda, M. K.; Shaikh, M. M.; Ghosh, P. Dalton
Trans. 2010, 39, 2428–2440.
a
b
c
Isolated yield.
Reaction in ethanol.
Yield after fifth cycle.
Yield at 5 g scale.
Reaction at room temperature.
d
e
can be performed on a relatively larger scale (5 g) to give good
yields (Table 2, entry 1) showing its prospects for scaled-up
applications.
We believe that the reaction proceeds via metal-oxygen shift
mechanism in the present reaction as depicted in Scheme 2 and
suggested by Chu and Trout.20 The ease of the formation of sulfox-
ide is likely to happen through the nucleophilic attack by the sul-
fide to the electrophilic O–O bond of peroxometal species thus
facilitating the regeneration of the catalyst.
It is relevant to mention that a commercially available vana-
dium complex, VO(acac)2 (acac = acetyl acetonate), might as well
be considered as a catalyst for such oxidations using H2O2 as the
oxidant. However, the efficacy and selectivity are comparatively
low.21 This is indeed expected because the metal has +IV oxidation
state (d1 system) in VO(acac)2 whereas +V (d0 system) in our com-
plex. Hence VO2F(dmpz)2 is more effective in activating H2O2
6. and references cited therein (a) Conte, V.; Floris, B. Inorg. Chim. Acta 2010, 363,
1935–1946; (b) Conte, V.; Fabbianesi, F.; Floris, B.; Galloni, P.; Sordi, D.; Arends,
I. W. C. E.; Bonchio, M.; Rehder, D.; Bogdal, D. Pure Appl. Chem. 2009, 81, 1265–
1277; (c) Wu, P.; Celik, C.; Santoni, G.; Dallery, J.; Rehder, D. Eur. J. Inorg. Chem.
2008, 33, 5203–5213; (d) Kantam, M. L.; Neelima, B.; Reddy, C. V.; Chaudhuri,
M. K.; Dehury, S. K. Catal. Lett. 2004, 95, 19–22; (e) Anisimov, A. V.; Fedorava, E.
V.; Lesnugin, A. Z.; Senyavin, V. M.; Aslanov, L. A.; Rybakav, V. B.; Tarakanova, A.
V. Catal. Today 2003, 78, 319–325; (f) Ligttenbarg, A. G. J.; Hage, R.; Feringa, B. L.
Coord. Chem. Rev. 2003, 237, 89–101; (g) Bhattacharjee, M.; Chettri, S. K.;
Chettri, S. K.; Chaudhuri, M. K.; Islam, N. S.; Barman, S. R. J. Mol. Catal. 1993, 78,
143–149.
7. (a) Wu, P.; Santoni, G.; Froeba, M.; Rehder, D. Chem. Biodiver. 2008, 5, 1913–
1926; (b) Wikete, C.; Wu, P.; Zampella, G.; De Gioia, L.; Licini, G.; Rehder, D.
Inorg. Chem. 2007, 46, 196–207; (c) Bortolini, O.; Conte, V. J. Inorg. Biochem.
2005, 99, 1549–1557; (d) Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1986, 108,
7834–7836; (e) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed Oxidations of Organic
Compounds; Academic Press: New York, 1981.