Highly Enantioselective Copper-Catalyzed Allylic Alkylation
FULL PAPERS
by GC on a CP-Chiralsil-Dex CB, 25 m  0.25 mm column, He
flow 1.0 mL/min, isothermic 758C, tr 39.8 min for (R)-2a;
tr 40.5 min for (S)-2a.
124, 7256; bisoxazolines: d) F. Glorius, A. Pfaltz, Org.
Lett. 1999, 1, 141.
[8] a) J. M. Brown, J. E. MacIntyre, J. Chem. Soc. Perkin
Trans. 2 1985, 961; b) A. J. Blacker, M. L. Clarke, M. S.
Loft, M. F. Mahon, M. E. Humphries, J. M. J. Williams,
Chem. Eur. J. 2000, 6, 353.
Supporting Information Available
[9] T. Hayashi, A. Okada, T. Suzuka, M. Kawatsura, Org.
Lett. 2003, 5, 1713.
General procedures and preparation of 2b, 2c, 2d, 2e, 2f, 2 g, 2 h
and 2i; synthesis of allylic bromides 1b, 1c, 1d, 1e, 1f and 1 g;
general procedure for preparation of phosphoramidite ligands
7, 12, 13 and 14.
[10] The highest enantioselectivity in a Pd-catalyzed allylic
alkylation with a hard organometallic-based nucleophile
has been reported by Buono et al.: F. Fotiadu, P. Cros, B.
Faure, G. Buono, Tetrahedron Lett. 1990, 31, 77.
[11] J. Tsuji, Palladium Reagents and Catalysts, Wiley, Chi-
chester, 1995, p. 292.
Acknowledgements
[12] a) A. F. Indolese, G. Consiglio, Organometallics 1994, 13,
2230; b) E. Gomez-Bengoa, N. M. Heron, M. T. Didiuk,
C. A. Luchaco, A. H. Hoveyda, J. Am. Chem. Soc. 1998,
120, 7649.
[13] N. Nomura, T. V. RajanBabu, Tetrahedron Lett. 1997, 38,
1713.
We thankIng. M. van Gelder for assistance with the GC and
HPLC analyses. Financial support from the Dutch Ministry of
Economic Affairs (EET project) and the Dutch Organisation
for Scientific Research (NWO-CW) is gratefully acknowledged.
[14] a) R. M. Magid, Tetrahedron 1980, 36, 1901; b) B. Breit,
P. Demel, in: Modern Organocopper Chemistry, (Ed.: N.
Krause), Wiley-VCH, Weinheim, 2002, p. 210.
[15] A. S. E. Karlstrˆm, J.-E. B‰ckvall, in: Modern Organo-
copper Chemistry, (Ed.: N. Krause), Wiley-VCH, Wein-
heim, 2002, p. 259.
[16] a) M. van Klaveren, E. S. M. Persson, A. del Villar,
D. M. Grove, J.-E. B‰ckvall, G. van Koten, Tetrahedron
Lett. 1995, 36, 3059; b) G. J. Meuzelaar, A. S. E. Karl-
strˆm, M. van Klaveren, E. S. M. Persson, A. del Villar,
G. van Koten, J.-E. B‰ckvall, Tetrahedron 2000, 56, 2895;
c) A. S. E. Karlstrˆm, F. F. Huerta, G. J. Meuzelaar, J.-E.
B‰ckvall, Synlett 2001, 923.
[17] a) A. Alexakis, C. Malan, L. Lea, C. Benhaim, X.
Fournioux, Synlett 2001, 927; b) A. Alexakis, K. Croset,
Org. Lett. 2002, 4, 4147.
[18] C. Bˆrner, J. Gimeno, S. Gladiali, P. J. Goldsmith, D.
Ramazzotti, S. Woodward, Chem. Commun. 2000, 2433.
[19] a) F. D¸bner, P. Knochel, Angew. Chem. 1999, 111, 391;
Angew. Chem. Int. Ed. 1999, 38, 379; b) F. D¸bner, P.
Knochel, Tetrahedron Lett. 2000, 41, 9233.
References and Notes
[1] a) M. Beller, C. Bolm, Transition Metals for Organic
Synthesis, Wiley-VCH, Weinheim, 1998; b) S.-I. Muraha-
shi, S. G. Davies, Transition Metal Catalysed Reactions,
Blackwell Science, Malden, 1999.
[2] C. G. Frost, J. Howarth, J. M. J. Williams, Tetrahedron:
Asymmetry 1992, 3, 1089.
[3] a) A. Pfaltz, M. Lautens, in: Comprehensive Asymmetric
Catalysis, Vol. 2, (Eds.: E. N. Jacobsen, A. Pfaltz, H.
Yamamoto), Springer, Berlin, 1999, p. 833; b) B. M.
Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395;
c) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103,
2921; d) G. Helmchen, J. Organomet. Chem. 1999, 576,
203.
[4] a) T. Hayashi, M. Kawatsura, Y. Uozumi, Chem. Com-
mun. 1997, 561; b) R. Hilgraf, A. Pfaltz, Synlett 1999,
1814; c) S.-L. You, X.-Z. Zhu, Y.-M. Luo, X.-L. Hou, L.-
X. Dai, J. Am. Chem. Soc. 2001, 123, 7471.
[5] G. C. Lloyd-Jones, A. Pfaltz, Angew. Chem. 1995, 107,
534; Angew. Chem. Int. Ed. 1995, 34, 462.
[20] a) C. A. Luchaco-Cullis, H. Mizutani, K. E. Murphy,
A. H. Hoveyda, Angew. Chem. 2001, 113, 1504; Angew.
Chem. Int. Ed. 2001, 40, 1456; b) K. E. Murphy, A. H.
Hoveyda, J. Am. Chem. Soc. 2003, 125, 4690.
[21] a) S. Ongeri, U. Piarulli, M. Roux, C. Monti, C. Gennari,
Helv. Chim. Acta 2002, 85, 3388; b) U. Piarulli, P.
Daubos, C. Claverie, M. Roux, C. Gennari, Angew.
Chem. 2003, 115, 244; Angew. Chem. Int. Ed. 2003, 42,
234.
[6] Phosphinooxazolines: a) J. P. Janssen, G. Helmchen,
Tetrahedron Lett. 1997, 38, 8025; phosphoramidites:
b) B. Bartels, G. Helmchen, Chem. Commun. 1999, 741;
c) B. Bartels, C. GarcÌa-Yebra, G. Helmchen, Eur. J. Org.
Chem. 2003, 1097; phosphites: d) K. Fuji, N. Kinoshita,
K. Tanaka, T. Kawabata, Chem. Commun. 1999, 2289;
e) T. Kanayama, K. Yoshida, H. Miyabe, Y. Takemoto,
Angew. Chem. 2003, 115, 2100; Angew. Chem. Int. Ed.
2003, 42, 2054.
[7] Bispicolinamides: a) B. M. Trost, I. Hachiya, J. Am.
Chem. Soc. 1998, 120, 1104; b) O. Belda, N.-F. Kaiser,
U. Bremberg, M. Larhed, A. Hallberg, C. Moberg, J.
Org. Chem. 2000, 65, 5868; b) B. M. Trost, K. Dogra, I.
Hachiya, T. Emura, D. L. Hughes, S. Krska, R. A.
Reamer, M. Palucki, N. Yasuda, P. J. Reider, Angew.
Chem. 2002, 114, 2009; Angew. Chem. Int. Ed. 2002, 41,
1929; c) B. M. Trost, K. Dogra, J. Am. Chem. Soc. 2002,
[22] H. Malda, A. W. van Zijl, L. A. Arnold, B. L. Feringa,
Org. Lett. 2001, 3, 1169.
[23] Diglyme, mp 648C.
[24] CuOTf was used as (CuOTf)2 ¥ C6H6.
[25] The standard procedure implies the addition of cinnamyl
bromide to a cooled solution of diethylzinc and catalyst.
In the present procedure the diethylzinc is added to a
cooled solution of substrate and catalyst.
Adv. Synth. Catal. 2004, 346, 413 420
asc.wiley-vch.de
¹ 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
419