M. J. Matos et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3268–3270
3269
With the aim of finding out new structural features for the MAO
inhibitory activity and selectivity, we decided in this work to ex-
plore the importance of the number and position of different meth-
oxy groups under the benzenic ring in 3-position (compounds
is an important factor to discriminate the potential therapeutic
application of this kind of molecules.
Comparing the iMAO-B activities of 3 and 4, the introduction of
a p-methoxy group increases the inhibitory activity. Substitution
with two methoxy groups in the 30- and 50-positions on the phenyl
ring, compound 5, improves the iMAO-B activity. Increasing the
number of methoxy substituent to three, compound 6, decreases
the enzymatic inhibitory activity. However, compound 6 is even
better than none substituted coumarin 3. The presence of methoxy
substituent in the 3-phenyl ring seems to be important to modu-
late and improve the inhibitory enzymatic activity of the 6-
methyl-3-phenylcoumarins.
These hybrid compounds with resveratrol–coumarin skeleton
show high selectivity against MAO-B isoenzyme, being active in
the nanomolar range. Introduction of methoxy groups in the phe-
nyl ring improves the activity, giving more active and selective
compounds than the reference ones. These modifications, which
we studying more deeply, can improve the pharmacologic profile
of the synthesized coumarins in the Parkinson’s disease.
4
27,28–6), to establish a relation between them and with the non
substituted analogue (compound 327–29).
The preparation of these 6-methyl-3-phenylcoumarins was per-
formed via the classical Perkin reaction.29 This reaction was carried
out by condensation of the 5-methylsalicylaldehyde 1 and the con-
veniently substituted phenylacetic acids 2, with N,N0-dicyclohexyl-
carbodiimide (DCC) as dehydrating agent, under DMSO reflux,
during 24 h (Scheme 1). The reaction to obtain 3–6 is very clean
and the yields are between 60% and 70%.30–33 The obtained prod-
ucts are easy to purify by flash chromatography, using a mixture
of hexane/ethyl acetate in a proportion 9:1 as eluent.
The inhibitory MAO activity of compounds 3–6 was evaluated
in vitro by the measurement of the enzymatic activity of human re-
combinant MAO isoforms in BTI insect cells infected with baculo-
virus.8,34 Then, the IC50 values and MAO-B selectivity ratios [IC50
(MAO-A)]/[IC50 (MAO-B)] for inhibitory effects of both, new com-
pounds and reference inhibitors, were calculated (Table 1).35
The prepared series of compounds proved to be selective as
inhibitor of the MAO-B isoenzyme. Compound 3, none substituted
in the phenyl ring, is by itself very active and selective against
MAO-B isoenzyme. Compound 4 (with a p-methoxy group) has a
MAO-B IC50 similar to the R-(ꢀ)-deprenyl (reference MAO-B inhib-
itor) and is more selective than this one. The most potent molecule
of this family is compound 5, bearing two methoxy groups in 30-
and 50-positions (IC50 = 8.98 1.42 nM). This one is two times more
active and several times more iMAO-B selective than the R-(ꢀ)-
deprenyl. Compound 6, with 3 methoxy groups, is more active than
3 (none substituted) but it loses activity in respect to the mono and
dimethoxy derivatives (compounds 4 and 5, respectively). None of
the described compounds showed a MAO-A inhibitory activity for
Acknowledgements
Thanks the Spanish Ministerio de Sanidad
y Consumo
(PI061457 and PI061537) and to Xunta da Galicia (PXIB20304PR,
INCITE08PXIB203022PR and 08CSA019203PR) and Fondazione
Banco Sardegna (Italy) for financial support. M.J.M. also thanks to
MIUR the Ph.D. Grant.
References and notes
1. Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Curr. Med. Chem.
2005, 12, 887.
2. Hoult, J. R. S.; Payá, M. Gen. Pharmacol. 1996, 27, 713.
3. Kontogiorgis, C.; Hadjipavlou-Litina, D. J. Enzyme Inhib. Med. Chem. 2003, 18, 63.
4. Kabeya, L.; Marchi, A.; Kanashiro, A.; Lopes, N.; Silva, C.; Pupo, M.; Lucisano-
Valim, Y. Bioorg. Med. Chem. 2007, 15, 1516.
the highest concentration tested (100
lM). This iMAO-B selectivity
5. Carotti, A.; Altomare, C.; Catto, M.; Gnerre, C.; Summo, L.; De Marco, A.; Rose, S.;
Jenner, P.; Testa, B. Chem. Biod. 2006, 3, 134.
6. Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.;
Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; Pinna, L.; Meggio, F.; Moro,
S. J. Med. Chem. 2008, 51, 752.
R1
R2
HO
O
R1
R2
Me
CHO
OH
Me
a
7. Santana, L.; Uriarte, E.; González-Díaz, H.; Zagotto, G.; Soto-Otero, R.; Méndez-
Álvarez, E. J. Med. Chem. 2006, 49, 1118.
8. Santana, L.; González-díaz, H.; Quezada, E.; Uriarte, E.; Yáñez, M.; Viña, D.;
Orallo, F. J. Med. Chem. 2008, 51, 6740.
9. Catto, M.; Nicolotti, O.; Leonetti, F.; Carotti, A.; Favia, A.; Soto-Otero, R.;
Méndez-Álvarez, E.; Carotti, A. J. Med. Chem. 2006, 49, 4912.
10. Gnerre, C.; Catto, M.; Leonetti, F.; Weber, P.; Carrupt, P.; Altomare, C.; Carotti,
A.; Testa, B. J. Med. Chem. 2000, 43, 4747.
11. Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini,
P.; Alacaro, S.; Ortuso, F. Bioorg. Med. Chem. Lett. 2004, 14, 3697.
12. Frémont, L. Life Sci. 2000, 66, 663.
R3
O
O
R3
2
1
3-6
3: R1 = R2 = R3 = H
4: R1 = R3 = H , R2 = OMe
5: R1 = R3 = OMe , R2 = H
6: R1 = R2 = R3 = OMe
13. Orallo, F. In Resveratrol in Health and Disease; Aggarwal, B. B., Shishodia, S., Eds.;
CRC Press: USA, 2005; p 577.
Scheme 1. Reagents and conditions: (a) DCC, DMSO, 110 °C, 24 h.
14. Leiro, J.; Álvarez, E.; Arranz, J.; Laguna, R.; Uriarte, E.; Orallo, F. J. Leukocyte Biol.
2004, 75, 1156.
15. Orallo, F. Curr. Med. Chem. 2008, 15, 1887.
16. Yánez, M.; Fraiz, N.; Cano, E.; Orallo, F. Biochem. Biophys. Res. Commun. 2006,
344, 688.
17. Vilar, S.; Quezada, E.; Santana, L.; Uriarte, E.; Yánez, M.; Fraiz, N.; Alcaide, C.;
Cano, E.; Orallo, F. Bioorg. Med. Chem. Lett. 2006, 16, 257.
18. Vilar, S.; Quezada, E.; Alcaide, C.; Orallo, F.; Santana, L.; Uriarte, E. Qsar Comb.
Sci. 2007, 26, 317.
19. De Colibus, L.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D. E.; Mattevi, A. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 12684.
20. Grimsby, J.; Lan, N. C.; Neve, R.; Chen, K.; Shih, J. C. J. Neurochem. 1990, 55,
1166.
21. Edmondson, D. E.; Mattevi, A.; Binda, C.; Li, M.; Hubalek, F. Curr. Med. Chem.
2004, 11, 1983.
Table 1
MAO-A and MAO-B inhibitory activity results for compounds 3–6 and reference
compounds
Compd
MAO-A IC50
MAO-B IC50
Ratio
*
*
*
*
3
4
5
6
283.75 0.98 nM
13.05 0.90 nM
8.98 1.42 nM
160.64 1.01 nM
19.60 0.86 nM
>352b
>7663b
>11,136b
>623b
3431
R-(ꢀ)-Deprenyl
67.25 1.02 l
Ma
Iproniazide
6.56 0.76
l
M
7.54 0.36
l
M
0.87
*
22. Harfenist, H.; Heuseur, D. J.; Joyner, C. T.; Batchelor, J. F.; White, H. L. J. Med.
Chem. 1996, 39, 1857.
23. Wouters, J. Curr. Med. Chem. 1998, 5, 137.
24. Binda, C.; Newton-Vinson, P.; Hubalek, F.; Edmondson, D. E.; Mattevi, A. Nat.
Struct. Biol. 2002, 9, 22.
25. Binda, C.; Li, M.; Hubalek, F.; Restelli, N.; Edmondson, D. E.; Mattevi, A. Proc.
Natl. Acad. Sci. U.S.A. 2003, 100, 9750.
Inactive at 100 lM (highest concentration tested). At higher concentrations
compounds precipitate.
a
P <0.01 versus the corresponding IC50 values obtained against MAO-B, as
determined by ANOVA/Dunnett’s.
b
Values obtained under the assumption that the corresponding IC50 against
MAO-A is the highest concentration tested (100 lM).