A R T I C L E S
Hase et al.
formation of the polyisocyanides in solution was further
proved by the helix-sense-selective polymerization of achiral
bulky isocyanides by Nolte8 and Novak.9 Since then, wide
varieties of helical polyisocyanides with functional pendant
groups have been synthesized, and some of them have been
used for optoelectronic and liquid crystalline materials.2,10
However, Green11 and Salvadori12 claimed that polyisocya-
nides bearing less bulky aliphatic, aralkyl, and aromatic pendant
groups might not have a regular 4/1 helical conformation
because of a possible complicated configurational isomerism
(syn-anti isomerization) around the CdN double bond and s-cis
and s-trans conformational isomerism around the CsC bond
of the main-chain. In addition, Euler and Rosen13 experimentally
showed a slow interconversion of poly(phenyl isocyanide) from
an “as-prepared” 4/1 helical conformation to a more extended
s-trans, zigzag conformation; an analogous s-trans structure as
one of the most stable structures was also theoretically proposed
by Clericuzio and Salvadori.14 As a consequence, helical
polyisocyanidessin particular, helical poly(phenyl isocya-
nide)sslack unquestionable direct evidence for their helical
structures.15
Recently, we reported that a helical polyisocyanide with a
controlled helix-sense could be produced on the basis of the
noncovalent “helicity induction and chiral memory effect”.1h,k,o,p,16
An optically inactive poly(4-carboxyphenyl isocyanide) (poly-
1-H) and its sodium salt (poly-1-Na) were found to form a
preferred-handed helical conformation upon noncovalent com-
plexation with chiral amines in water.17 The induced helix
remained after complete removal of the chiral amines, and
further modifications of the pendant groups to esters and amide
residues were possible without loss of the macromolecular
(10) For liquid crystalline polyisocyanides: (a) Cornelissen, J. J. L. M.;
Donners, J. J. J. M.; de Gelder, R.; Graswinckel, W. S.; Metselaar,
G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science
2001, 293, 676–680. (b) Cornelissen, J. J. L. M.; Granswinckel, W. S.;
Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. J. Polym.
Sci., Part A: Polym. Chem. 2003, 41, 1725–1736. (c) Tian, Y.; Kamata,
K.; Yoshida, H.; Iyoda, T. Chem.-Eur. J. 2006, 12, 584–591. (d)
Kajitani, T.; Okoshi, K.; Sakurai, S.-i.; Kumaki, J.; Yashima, E. J. Am.
Chem. Soc. 2006, 128, 708–709. (e) Wezenberg, S. J.; Metselaar,
G. A.; Rowan, A. E.; Cornelissen, J. J. L. M.; Seebach, D.; Nolte,
R. J. M. Chem.-Eur. J. 2006, 12, 2778–2786. (f) Metselaar, G. A.;
Adams, P. J. H. M.; Nolte, R. J. M.; Cornelissen, J. J. L. M.; Rowan,
A. E. Chem.-Eur. J. 2007, 13, 950–960. (g) Metselaar, G. A.;
Wezenberg, S. J.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; Rowan,
A. E. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 981–988. (h)
Onouchi, H.; Okoshi, K.; Kajitani, T.; Sakurai, S.-i.; Nagai, K.;
Kumaki, J.; Onitsuka, K.; Yashima, E. J. Am. Chem. Soc. 2008, 130,
229–236. (i) Kajitani, T.; Lin, H.; Nagai, K.; Okoshi, K.; Onouchi,
H.; Yashima, E. Macromolecules 2009, 42, 560–567. For optoelec-
tronic polyisocyanides, see: (j) Kauranen, K.; Verbiest, T.; Boutton,
C.; Teerenstra, M. N.; Schouten, A. J.; Nolte, R. J. M.; Persoons, A.
Science 1995, 270, 966–969. (k) Hida, N.; Takei, F.; Onitsuka, K.;
Shiga, K.; Asaoka, S.; Iyoda, T.; Takahashi, S. Angew. Chem., Int.
Ed. 2003, 42, 4349–4352. For other leading references on helical
polyisocyanides prepared by the polymerization of the corresponding
optically active monomers, see: (l) Cornelissen, J. J. L. M.; Fischer,
M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1427–
1430. (m) Amabilino, D. B.; Ramos, E.; Serrano, J.-L.; Sierra, T.;
Veciana, J. J. Am. Chem. Soc. 1998, 120, 9126–9134. (n) Amabilino,
D. B.; Ramos, E.; Serrano, J.-L.; Veciana, J. AdV. Mater. 1998, 10,
1001–1005. (o) Hasegawa, T.; Kondoh, S.; Matsuura, K.; Kobayashi,
K. Macromolecules 1999, 32, 6595–6603. (p) Takei, F.; Yanai, K.;
Onitsuka, K.; Takahashi, S. Chem.-Eur. J. 2000, 6, 983–993. (q)
Cornelissen, J. J. L. M.; Graswinckel, W. S.; Adams, P. J. H. M.;
Nachtegaal, G. H.; Kentgens, A. P. M.; Sommerdijk, N. A. J. M.;
Nolte, R. J. M. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 4255–
4264. (r) Yamada, Y.; Kawai, T.; Abe, J.; Iyoda, T. J. Polym. Sci.,
Part A: Polym. Chem. 2002, 40, 399–408. (s) Takei, F.; Onitsuka,
K.; Takahashi, S. Macromolecules 2005, 38, 1513–1516. (t) Kajitani,
T.; Okoshi, K.; Yashima, E. Macromolecules 2008, 41, 1601–1611.
(11) Green, M. M.; Gross, R. A.; Schilling, F. C.; Zero, K.; Crosby, C.
Macromolecules 1988, 21, 1839–1846.
(1) Reviews: (a) Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.;
Cook, R.; Lifson, S. Science 1995, 268, 1860–1865. (b) Okamoto,
Y.; Yashima, E. Angew. Chem., Int. Ed. 1998, 37, 1020–1043. (c)
Green, M. M.; Park, J.-W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger,
R. L. B.; Selinger, J. V. Angew. Chem., Int. Ed. 1999, 38, 3138–
3154. (d) Fujiki, M. Macromol. Rapid Commun. 2001, 22, 539–563.
(e) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S.
Chem. ReV. 2001, 101, 3893–4011. (f) Nakano, T.; Okamoto, Y. Chem.
ReV. 2001, 101, 4013–4038. (g) Brunsveld, L.; Folmer, B. J. B.; Meijer,
E. W.; Sijbesma, R. P. Chem. ReV. 2001, 101, 4071–4097. (h)
Yashima, E.; Maeda, K.; Nishimura, T. Chem.-Eur. J. 2004, 10, 42–
51. (i) Reggelin, M.; Doerr, S.; Klussmann, M.; Schultz, M.; Holbach,
M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5461–5466. (j) Lam,
J. W. Y.; Tang, B. Z. Acc. Chem. Res. 2005, 38, 745–754. (k) Maeda,
K.; Yashima, E. Top. Curr. Chem. 2006, 265, 47–88. (l) Aoki, T.;
Kaneko, T.; Teraguchi, M. Polymer 2006, 47, 4867–4892. (m) Masuda,
T. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 165–180. (n) Rudick,
J. G.; Percec, V. New J. Chem. 2007, 31, 1083–1096. (o) Yashima,
E.; Maeda, K. Macromolecules 2008, 41, 3–12. (p) Yashima, E.;
Maeda, K.; Furusho, Y. Acc. Chem. Res. 2008, 41, 1166–1180. (q)
Rudick, J. G.; Percec, V. Acc. Chem. Res. 2008, 41, 1641–1652. (r)
Pijper, D.; Feringa, B. L. Soft Matter 2008, 4, 1349–1372. (s) Kim,
H.-J.; Lim, Y.-B.; Lee, M. J. Polym Sci., Part A: Polym. Chem. 2008,
46, 1925–1935.
(2) Reviews: (a) Millich, F. Chem. ReV. 1972, 72, 101–113. (b) Millich,
F. AdV. Polym. Sci. 1975, 19, 117–141. (c) Drenth, W.; Nolte, R. J. M.
Acc. Chem. Res. 1979, 12, 30–35. (d) Millich, F. J. Polym. Sci.
Macromol. ReV. 1980, 15, 207–253. (e) Nolte, R. J. M. Chem. Soc.
ReV. 1994, 23, 11–19. (f) Takahashi, S.; Onitsuka, K.; Takei, F. Proc.
Jpn. Acad. Ser. B 1998, 74, 25–30. (g) Cornelissen, J. J. L. M.; Rowan,
A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. ReV. 2001,
101, 4039–4070. (h) Suginome, M.; Ito, Y. AdV. Polym. Sci. 2004,
171, 77–136. (i) Amabilino, D. B.; Serrano, J.-L.; Sierra, T.; Veciana,
J. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3161–3174.
(3) (a) Tian, G.; Lu, Y.; Novak, B. M. J. Am. Chem. Soc. 2004, 126,
4082–4083. (b) Tang, H.-Z.; Novak, B. M.; He, J.; Polavarapu, P. L.
Angew. Chem., Int. Ed. 2005, 44, 7298–7301. (c) Tang, H.-Z.; Boyle,
P. D.; Novak, B. M. J. Am. Chem. Soc. 2005, 127, 2136–2142.
(4) (a) Millich, F.; Sinclair, R. G. J. Polym. Sci., Part C 1968, 22, 33–43.
(b) Nolte, R. J. M.; Zwikker, J. W.; Reedijk, J.; Drenth, W. J. Mol.
Catal. 1978, 4, 423–426. (c) van Beijnen, A. J. M.; Nolte, R. J. M.;
Zwikker, J. W.; Drenth, W. J. Mol. Catal. 1978, 4, 427–432.
(5) Nolte, R. J. M.; van Beijnen, A. J. M.; Drenth, W. J. Am. Chem. Soc.
1974, 96, 5932–5933.
(12) Pini, D.; Iuliano, A.; Salvadori, P. Macromolecules 1992, 25, 6059–
6062.
(13) (a) Spencer, L.; Kim, M.; Euler, W. B.; Rosen, W. J. Am. Chem. Soc.
1997, 119, 8129–8130. (b) Euler, W. B.; Huang, J-.T.; Kim, M.;
Spencer, L.; Rosen, W. Chem. Commun. 1997, 257–258. (c) Huang,
J.-T.; Sun, J.; Euler, W. B.; Rosen, W. J. Polym. Sci., Part A, Polym.
Chem. 1997, 35, 439–446. (d) Spencer, L.; Euler, W. B.; Traficante,
D. D.; Kim, M.; Rosen, W. Magn. Reson. Chem. 1998, 36, 398–402.
(14) (a) Clericuzio, M.; Alagona, G.; Ghio, C.; Salvadori, P. J. Am. Chem.
Soc. 1997, 119, 1059–1071. Molecular orbital calculations of poly-
(iminomethylene) using semi-empirical methods were also conducted.
See: (b) Young, V. Y.; Hellmuth, E. W. J. Mol. Struct.: THEOCHEM
2002, 578, 1–17.
(15) Recently, we have reported the helix-sense-selective living polymer-
ization of an optically active phenyl isocyanide bearing an L-alanine
pendant with a long decyl chain with the achiral µ-ethynediyl Pt-Pd
catalyst that unprecedentedly produced both right- and left-handed
helical, rigid-rod polyisocyanides at once with a different molecular
weight and a narrow molecular weight distribution, which could be
separated into each helix in a facile fractionation with acetone. The
structures of both right- and left-handed helical polyisocyanides were
proposed to be a 15-unit/4-turn (15/4) helix on the basis of X-ray
analyses of the corresponding oriented films.10h However, the detailed
structural analysis, including a possible configurational and confor-
mational isomerism of the main-chain, has never been pursued.
(6) Kollmar, C.; Hoffmann, R. J. Am. Chem. Soc. 1990, 112, 8230–8238.
(7) van Beijnen, A. J. M.; Nolte, R. J. M.; Drenth, W.; Hezemans, A. M. F.
Tetrahedron 1976, 32, 2017–2019.
(8) (a) Kamer, P. C. J.; Nolte, R. J. M.; Drenth, W. J. Chem. Soc., Chem.
Commun. 1986, 1789–1791. (b) Kamer, P. C. J.; Nolte, R. J. M.;
Drenth, W. J. Am. Chem. Soc. 1988, 110, 6818–6825.
(9) Deming, T. J.; Novak, B. M. J. Am. Chem. Soc. 1992, 114, 7926–
7927.
9
10720 J. AM. CHEM. SOC. VOL. 131, NO. 30, 2009