lectivities, acyclic ketones gave poor results.17,20 Despite
some success of these methodologies, reaction with acyclic
nonsymmetrical ketones, especially the methyl ketones,
remains very challenging. Besides yield and enantioselec-
tivity, the regioselectivity of the addition is also an important
issue.21
Herein, we report an efficient, highly regio- and enanti-
oselective organocatalytic conjugate addition of acyclic
methyl ketones to the ꢀ-silylmethylene malonate 4 providing
the silylated keto-esters 2. The potential of this new strategy
has also been exemplified by synthesizing a known inter-
mediate for the synthesis of (+)-preussin 5,22 a pyrrolidine
natural product with interesting biological activities.
Figure 1. Structures of substrates, targets, and organocatalysts.
Initially, we chose acetone to obviate the regioselectivity
issue and concentrated our effort to optimize the yield and
enantioselectivity of the addition product 2a (Figure 1, R )
Me). The direct addition of acetone to malonate 4 using a
catalytic amount of racemic amino acids for the synthesis
of silylated ketodiester rac-2a has already been demonstrated
by us,23 as a part of our goal to develop silicon-based linkers
for solid-phase organic synthesis.24 Unfortunately, the asym-
metric version of this reaction with a few natural amino acid
catalysts in N-methylpyrrolidone (NMP) at room temperature
resulted in very poor enantioselectivity (Table 1, entries
1-3). Reaction with simple pyrrolidines derived from
proline, viz., diphenylprolinol 6a25 and its silyl ether 6b,26
was not effective for this addition (Table 1, entries 4 and
5). Pyrrolidine-based diamines derived from natural proline
such as N-(2-pyrrolidinylmethyl)pyrrolidine 6c and N-(2-
pyrrolidinylmethyl)piperidine 6d (Figure 1) are popular
organocatalysts for aldol,27 Michael,17,28 and Mannich reac-
tions.29 Moreover, they can be easily made,30 and also,
Barbas III has used such catalysts for asymmetric addition
of ketones to alkylidene malonates.17 When pyrrolidine 6c
was used under the reported conditions,17 addition of acetone
to 4 was very slow, and the desired addition product 2a was
formed in poor yield but with moderate enantioselectivity
(Table 1, entry 6). The catalytic ability of pyrrolidine 6c was
increased substantially with slight erosion of enantioselec-
tivity by changing the solvent to NMP (Table 1, entry 7).
Similarly, pyrrolidine 6d also showed moderate yield and
selectivity in NMP (Table 1, entry 8).
However, the addition of the same donors16-20 to alkylidene
malonates is less successful. Barbas III and co-workers17 for
the first time demonstrated that acetone can add to various
aryl- and alkylidene malonates under organocatalysis with
moderate yields and enantioselectivities. List et al.18 have
shown the natural proline-catalyzed direct addition of acetone
to an arylidene malonate with good yield but poor enanti-
oselectivity. Extension of this methodology to the three-
component domino reaction19 between ketones, aldehydes,
and Meldrum’s acid leading to the formation of two new
C-C σ-bonds showed almost no enantioselectivity. Very
recently, Tang et al.20 reported that N-(pyrrolidin-2-ylmeth-
yl)trifluoromethanesulfonamide catalyst gives Michael ad-
ducts in moderate to good yields and good to high enanti-
oselectivities, depending upon the substituents present on the
ketones and the arylidene malonates. Alkylmethylene mal-
onates were not good acceptors for this reaction. Although
cyclic ketones reacted with good diastereo- and enantiose-
(11) Selected reviews:(a) Dalko, P. I.; Moisan, L. Angew. Chem., Int.
Ed. 2004, 43, 5138. (b) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
(c) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. ReV. 2007,
107, 5471. (d) Erkkila, A.; Majander, I.; Phiko, P. M. Chem. ReV. 2007,
107, 5416. (e) Sulzer-Mosse, S.; Alexakis, A. Chem. Commun. 2007, 3123.
(f) List, B. Chem. Commun 2006, 819.
(12) (a) Hong, B.-C.; Wu, M.-F.; Tseng, H.-C.; Liao, J.-H. Org. Lett.
2006, 8, 2217. (b) Mauro, M.; Bertelsen, S.; Landa, A.; Jørgensen, K. A.
J. Am. Chem. Soc. 2006, 128, 5475.
(13) (a) Melchiorre, P.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 4151.
(b) Fonseca, M. T. H.; List, B. Angew. Chem., Int. Ed. 2004, 43, 3958. (c)
Peelen, T. J.; Chi, Y.-G.; Gellman, S. H. J. Am. Chem. Soc. 2005, 127,
11598. (d) Chi, Y.-G.; Gellman, S. H. Org. Lett. 2005, 7, 4253. (e) Wang,
J.; Li, H.; Zu, L.-S.; Wang, W. AdV. Synth. Catal. 2006, 348, 425.
(14) Mosse´, S.; Alexakis, A. Org. Lett. 2005, 7, 4361.
(21) (a) Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611. (b) Tsogoeva,
S. B.; Wei, S. Chem. Commun. 2006, 1451.
(15) Selected examples:(a) List, B.; Pojarlier, P.; Martin, H. J. Org. Lett.
2001, 3, 2423. (b) Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am.
Chem. Soc. 2004, 126, 9558. (c) Mitchell, C. E. T.; Cobb, A. J. A.; Ley,
S. V. Synlett 2005, 4, 611. (d) Wang, W.; Wang, J.; Hao, H. Angew. Chem.,
Int. Ed. 2005, 44, 1369. (e) Xu, Y.-M.; Zou, W.-B.; Sunde´n, H.; Ibrahem,
I.; Co´rdova, A. AdV. Synth. Catal. 2006, 348, 418. (f) Cao, C.-L.; Ye, M.-
C.; Sun, X.-L.; Tang, Y. Org. Lett. 2006, 8, 2901. (g) Luo, S.-Z.; Mi, X.-
L.; Liu, S.; Xu, H.; Cheng, J.-P. Angew. Chem., Int. Ed. 2006, 45, 3039.
(h) Huang, H.-B.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170.
(16) Zhao, G.-L.; Vesely, J.; Sun, J.; Christensen, E. K.; Bonneau, C.;
(22) Schwartz, R. E.; Liesch, J.; Hensens, O.; Zitano, L.; Honeycutt,
S.; Garrity, G.; Fromtling, R. A.; Onishi, J.; Monaghan, R. J. Antibiot. 1988,
41, 1774.
(23) Date, S. M.; Iyer, P.; Ghosh, S. K. Synth. Commun. 2004, 34, 405.
(24) Iyer, P.; Ghosh, S. K. Tetrahedron Lett. 2002, 43, 9437.
(25) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jorgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 794.
(26) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int.
Ed. 2005, 44, 4212.
Co´rdova, A. AdV. Synth. Catal. 2008, 350, 657
.
(27) Selected examples:(a) Saito, S.; Yamamoto, H. Acc. Chem. Res.
2004, 37, 570. (b) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.;
Tanaka, F.; Barbas, C. F., III J. Am. Chem. Soc. 2006, 128, 734.
(28) (a) Betancort, J. M.; Barbas, C. F., III Org. Lett. 2001, 3, 3737. (b)
Andrey, O.; Alexakis, A.; Tomassini, A.; Bernarddinelli, G. AdV. Synth.
Catal. 2004, 346, 1147. (c) Planas, L.; Viret, J. P.; Royer, J. Tetrahedron:
(17) (a) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Barbas, C. F.,
III Tetrahedron Lett. 2001, 42, 4441. (b) Betancort, J. M.; Sak, K.;
Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III Synthesis 2004, 9, 1509.
(c) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III J. Am. Chem. Soc.
2001, 123, 5260
(18) List, B. Synlett 2001, 1675
(19) List, B. Synlett 2001, 1687
.
.
.
Asymmetry 2004, 15, 2399.
(29) Zhuang, W.; Saaby, S.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2004, 43, 4476.
(20) Cao, C.-L.; Sun, X. -Li; Zhou, J.- L.; Tang, Y. J. Org. Chem. 2007,
72, 4073
.
(30) Asami, M. Bull. Chem. Soc. Jpn. 1990, 63, 721.
Org. Lett., Vol. 11, No. 15, 2009
3271