ORGANIC
LETTERS
2009
Vol. 11, No. 15
3278-3281
Palladium-Catalyzed
Cyclocarbonylation-Decarboxylation of
Diethyl(2-iodoaryl)malonates with Vinyl
Ketones Affording Functionalized Enolic
2-Acyl-3,4-dihydronaphthalenones
Zhaoyan Zheng and Howard Alper*
Centre for Catalysis Research and InnoVation, Department of Chemistry, UniVersity of
Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
Received April 20, 2009
ABSTRACT
A wide variety of enolic tautomers of functionalized 2-acyl-3,4-dihydronaphthalen-1(2H)-ones were obtained in moderate to excellent yields by
the palladium-catalyzed cyclocarbonylation-decarboxylation of diethyl(2-iodoaryl)malonates with vinyl ketones and carbon monoxide. The reaction
may proceed via the formation of a keto-diester, followed by oxidative addition, CO insertion, intramolecular cyclization, and decarboxylation
to give the enolic substituted 2-acyldihydronaphthalenones.
3,4-Dihydronaphthalen-1(2H)-one, known as R-tetralone, and
its derivatives continue to occupy an important place in
organic and medicinal chemistry because of the presence of
this moiety in a number of natural products1 and synthetic
pharmaceuticals.2 2-Acyl-3,4-dihydronaphthalenones are key
building blocks for the construction of many bioactive
products such as (()brasiliquinone B3 and tetrahydronaph-
thalene.4 Classical approaches for the synthesis of 2-acyl-
3,4-dihydronaphthalenones include the condensation of the
corresponding 3,4-dihydronaphthalenone with aldehydes,
followed by oxidation of the resultant ketols with Jones
reagent.5 Acylation of R-tetralone using boron trifluoride
etherate or diethyl carbonate followed by treatment with
sodium acetate in refluxing methanol completes the synthetic
process.3,6 These methods need to start from the correspond-
ing tetralone and require multistep reactions. Routes to highly
substituted 2-acyl-3,4-dihydronaphthalenones are more com-
(2) (a) Deshpande, M. N.; Cain, M. H.; Patel, S. R.; Singman, P. R.;
Brown, D.; Gupta, A.; Barkalow, J.; Callen, G.; Patel, K.; Koops, R.;
Chorghade, M.; Foote, H.; Pariza, R. Org. Process Res. DeV. 1998, 2, 351.
(b) Vukics, K.; Fodor, T.; Fischer, J.; Fellegvari, I.; Levai, S. Org. Process
Res. DeV. 2002, 6, 82. (c) Zelle, R. E.; Hancock, A. A.; Buckner, S. A.;
Basha, F. Z.; Tietje, K.; DeBernardis, J. F.; Meyer, M. D. Bioorg. Med.
Chem. Lett. 1994, 4, 1319. (d) Moore, G.; Levacher, V.; Bourguignon, J.;
Dupas, G. Tetrahedron Lett. 2001, 42, 261. (e) Alamansa, C.; Gomez, L. A.;
Cavalcanti, F. L.; Rodriguez, R.; Carceller, E.; Bartroli, J.; Garcia-Rafanell,
J.; Forn, J. J. Med. Chem. 1993, 36, 2121. (f) Wachter, G. A.; Hartmann,
R. W.; Sergejew, T.; Grun, G. L.; Ledergerber, D. J. Med. Chem. 1996,
39, 834.
(1) (a) Jiao, P.; Swenson, D. C.; Gloer, J. B.; Campbell, J.; Shearer,
C. A. J. Nat. Prod. 2006, 69, 1667. (b) Barrett, A. G. M.; Blaney, F.;
Campbell, A. D.; Hamprecht, D.; Meyer, T.; White, A. J. P.; Witty, D.;
Williams, D. J. J. Org. Chem. 2002, 67, 2735. (c) Wipf, P.; Jung, J. K.;
Rodriguez, S.; Lazo, J. S. Tetrahedron 2001, 57, 283. (d) Ragot, J. P.;
Alcaraz, M. L.; Taylor, R. J. K. Tetrahedron Lett. 1998, 39, 4921. (e)
Laurent, D.; Guella, G.; Mancini, I.; Roquebert, M. F.; Farinole, F.; Pietra.
F Tetrahedron 2002, 58, 9163. (f) Quang, D. N.; Hashimoto, T.; Tanaka,
M.; Baumgartner, M.; Stadler, M.; Asakawa, Y. J. Nat. Prod. 2002, 65,
1869. (g) Wu, T. S.; Tsai, Y. L.; Damu, A. G.; Kuo, P. C.; Wu, P. L. J.
Nat. Prod. 2002, 65, 1522. (h) Basavaiah, D.; Reddy, R. J. Org. Biomol.
Chem. 2008, 6, 1034.
(3) Patil, M. L.; Borate, H. B.; Ponde, D. E.; Deshpande, V. H.
Tetrahedron 2002, 58, 6615.
(4) Vera, W. J.; Banerjee, A. K. ArkiVoc 2007, 8.
(5) (a) Yoshioka, M.; Sawada, H.; Saitoh, M.; Hasegawab, T. J. Chem.
Soc., Perkin Trans. 1990, 1, 1097.
(6) Anderson, A. G.; Greef, H. F. J. Am. Chem. Soc. 1952, 74, 5203
.
10.1021/ol900859n CCC: $40.75
Published on Web 07/07/2009
2009 American Chemical Society