R. T. Hendricks et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3637–3641
3641
Tedesco, R.; Shaw, A. N.; Bambal, R.; Chai, D.; Concha, N. O.; Darcy, M. G.;
Dhanak, D.; Fitch, D. M.; Gates, A.; Gerhardt, W. G.; Halegoua, D. L.; Han, C.;
Hofmann, G. A.; Johnston, V. K.; Kaura, A. C.; Liu, N.; Keenan, R. M.; Lin-Goerke,
J.; Sarisky, R. T.; Wiggall, K. J.; Zimmerman, M. N.; Duffy, K. J. J. Med. Chem. 2006,
49, 971; (c) During the course of our investigation, a related hydrogen bond
analysis was published describing compounds 4 and 5. See Ref. 4b Herein, we
describe an alternate synthesis of compound 4.; (d) For an alternate
preparation of 27, see Ref. 4b.
pared with 7o, the smaller, less-polar 4-fluoro-3-methylbenzyl
analog 7n is two orders of magnitude more potent (0.4 M vs
37 M). Somewhat surprisingly, replicon potency generally
tracked closely with NS5b potency. Cellular permeabilities based
on a 7-day caco cell assay are quite reasonable (7b, 7d, 7j;
Papp = 6.4, 9.4, 4.4 ꢁ 10ꢀ6 cm/s, respectively), however, a 21-day
caco cell assay suggests significant efflux occurs across the series
(7b, 7k, 7n; Papp AB/BA = 0.6/7.1, 0.6/4.9, 0.5/5.3 ꢁ 10ꢀ6 cm/s,
respectively).
A novel class of hydroxy quinolone thiadiazine inhibitors of
HCV NS5b polymerase was recently described.4a,4b A key feature
of this class of inhibitors is that they can form two internal hydro-
gen bonds which help to stabilize an NS5b-bound-like conforma-
tion, thus contributing their inhibitory potency. We have further
tested this hypothesis via synthesis of a series of closely related
molecules that contain varying degrees of hydrogen bonding func-
tionality. Our results suggest an alternate key feature of these
hydroxy quinolone based inhibitors is the acidic nature of this
functionality, leading to their interaction with the enzyme as
anions. From our effort, a novel series of hydroxy quinolone
1,4-thiazine derived inhibitors has emerged with sub-micromolar
potencies against the HCV NS5b polymerase enzyme.
l
l
5. Hendricks, R. T.; Spencer, S. R.; Blake, J. F.; Fell, J. B.; Fischer, J. P.; Stengel, P. J.;
Leveque, V. J. P.; Le Pogam, S.; Rajyaguru, S.; Najera, I.; Josey, J. A.; Swallow, S.
6. Milletti, F.; Storchi, L.; Sforna, G.; Cruciani, G. J. Chem. Inf. Model. 2007, 47,
compounds 2: 5.7 versus 4.4; 3: 7.3 versus 7.4; 7b: 3.9 versus 4.6; 7j: 4.0
versus 4.4.
7. Hardtmann, G. E.; Koletar, G.; Pfister, O. R. J. Heterocycl. Chem. 1975, 12, 565.
8. Mylari, B. L.; Oates, P. J.; Beebe, D. A.; Brackett, N. S.; Coutcher, J. B.; Dina, M. S.;
Zembrowski, W. J. J. Med. Chem. 2001, 44, 2595.
9. Winn, M.; De, B.; Zydowsky, T. M.; Altenbach, R. J.; Basha, F. Z.; Boyd, S. A.;
Brune, M. E.; Buckner, S. A.; Crowell, D.; Drizin, I.; Hancock, A. A.; Jae, H.-S.;
Kester, J. A.; Lee, J. Y.; Mantei, R. A.; Marsh, K. C.; Novosad, E. I.; Oheim, K. W.;
Rosenberg, S. H.; Shiosaki, K.; Sorensen, B. K.; Spina, K.; Sullivan, G. M.; Tasker,
A. S.; von Geldern, T. W.; Warner, R. B.; Obgenorth, T. J.; Kerkman, D. J.;
DeBernardis, J. F. J. Med. Chem. 1993, 36, 2676.
10. Klumpp, K.; Leveque, V.; Le Pogam, S.; Ma, H.; Jiang, W-R.; Kang, H.;
Granycome, C.; Singer, M.; Laxton, C.; Hang, J. Q.; Sarma, K.; Smith, D. B.;
Heindl, D.; Hobbs, C. J.; Merrett, J. H.; Symons, J.; Cammack, N.; Martin, J. A.;
Devos, R.; Najera, I. J. Biol. Chem. 2006, 281, 3793; Ma, H.; Leveque, V.; De Witte,
A.; Li, W.; Hendricks, T.; Clausen, S. M.; Cammack, N.; Klumpp, K. Virology 2005,
332, 8. Likely due to differences in our assay conditions (100 nM NS5b; cIRES
RNA template) compared with those reported by GSK (50 nM NS5b; poly-C
RNA template), our NS5b IC50’s for 1 and 2 are ca. 10–30-fold higher, however,
their relative potencies are similar and our replicon EC50 values are within ca.
2–6-fold of previously published values.
Acknowledgments
The authors wish to thank Drs. Eric Sjogren, Hans Maag, and
Keith Walker for their support and helpful discussions during the
course of this work.
11. PDB code: 2fvc.
12. GAMESS Version 27 June 2005 (R2): Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.;
Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.;
Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14,
1347. All stationary points were verified as true minima via computation of the
corresponding analytical frequencies.
References and notes
13. For comparison, the fully co-planar benzothiadiazine structure was found to be
ca. 0.80 kcal/mol higher in energy than the boat form, and shown to be a
transition state via computation of the analytical frequencies. A search of the
1. (a) Alter, M. J.; Moran, D. K.; Nainan, O. V.; McQuillan, G. M.; Gao, F.; Moyer, L.
A.; Kaslow, R. A.; Margolis, H. S. N. Eng. J. Med. 1999, 341, 556; (b) Tan, S.-L.;
Pause, A.; Shi, Y.; Sonenberg, N. Nat. Rev. Drug Disc. 2002, 1, 867; (c) Brass, V.;
Blum, H. E.; Moradpour, D. Exp. Opin. Ther. Targets 2004, 8, 295; (d) Beaulieu, P.
L.; Tsantrizos, Y. S. Curr. Opin. Invest. Drugs 2004, 5, 838.
2. World Health Organization, Hepatitis C Weekley Epidemiological Record, 1997,
72, 65.
3. Manns, M. P.; McHutchison, J. G.; Gordon, S. C.; Rustgi, V. K.; Shiffman, M.;
Reindollar, R.; Goodman, Z. D.; Koury, K.; Ling, M.; Albrecht, T. K. Lancet 2001,
358, 958.
4. (a) Dhanak, D.; Duffy, K. J.; Johnston, V. K.; Lin-Goerke, J.; Darcy, M.; Shaw, A.
N.; Gu, B.; Silverman, C.; Gates, A.; Nonnemacher, M. R.; Earnshaw, D. L.;
Casper, D. J.; Kaura, A.; Baker, A.; Greenwood, C.; Gutshall, L. L.; Maley, D.;
DelVecchio, A.; Nacarron, R.; Hoffmann, G. A.; Alnoah, D.; Cheng, H. Y.; Chan, G.;
Khandekar, S.; Keenan, R. M.; Sarisky, R. T. J. Biol. Chem. 2002, 277, 38322; (b)
CSD for thiadiazine containing molecules yields
a number of relevant
examples. In the majority of small molecule X-ray structures the thiadiazine
fragment is largely planar, though subtle puckering is noted in a few examples.
In light of the ab initio results, the planar conformation of the thiadiazine
group is likely due to crystal packing effects. CSD, Version 5.13, April 1997
release. Entries CACTAZ0001, DIAZOX0001, JIFYUS0001, JIFZAZ0001,
SEFMEV0001, SEFMIZ0001.
14. These findings do not exclude the possibility that the thiadiazines (i.e., 1)
might still bind in the enolic form. The available X-ray structure of 1 does not
allow for differentiation between the enolic and anionic forms.
15. Rockway, T. W.; Zhang, R.; Liu, D.; Betebenner, D. A.; McDaniel, K. F.; Pratt, J. K.;
Beno, D.; Montgomery, D.; Jiang, W. W.; Masse, S.; Kati, W. M.; Middleton, T.;
Molla, A.; Maring, C. J.; Kempf, D. J. Bioog. Med. Chem. Lett. 2006, 16, 3833.