sponding imines,7 and more recent papers confirm that early-
transition-metal catalysts lead to the anti-Markovnikov
adducts (Scheme 1, top).8 The Markovnikov addition has
(Scheme 1, bottom).15 Interestingly, an opposite regioselec-
tivity was observed when compared with Yamamoto’s
results.14b Recently, we have shown that cationic gold(I)
complexes (Cat) (Figure 1),16 featuring a bulky cyclic
Scheme 1. Previous Results for the Hydroamination of Allenes
Figure 1. Cationic gold(I) complexes promoting the addition of
NH3 to nonactivated alkynes and allenes.
(alkyl)(amino)carbene (CAAC)17 as ancillary ligand, ef-
ficiently promoted the addition of NH3 to nonactivated
alkynes and allenes.18 These first examples of hydroamina-
tion reaction with ammonia prompted us to investigate the
scope of application of our catalytic system. Here, we show
that Cat1 [a 1/1 mixture of (CAAC)AuCl and KB(C6F5)4]
efficiently promotes the intermolecular Markovnikov hy-
droamination of allenes A-C (scheme 2) with a variety of
primary and, more importantly, secondary amines.
first been achieved in the presence of equimolar amounts of
mercury(II), palladium(II), and platinum(II) salts9 and then
used a palladium(0) catalyst in the presence of triethylam-
monium iodide10 or acetic acid11 as cocatalysts. Gold
catalysts12 have more recently been developed.13 Yamamoto
et al. first demonstrated that 10 mol % of AuBr3 allowed
the room-temperature addition of primary arylamines to
allene to afford allylic amines14a and then described the
addition of morpholine to mono- and disubstituted allenes
at 80 °C, using 10 mol % of a 1/1 mixture of (Ar3P)AuCl
and AgOTf (Scheme 1, middle).14b In 2008, Widenhoefer
reported the Markovnikov hydroamination with N-unsub-
stituted carbamates using catalytic amounts of an equimolar
mixture of LAuCl and AgOTf (L ) NHC, phosphine)
Scheme 2. Allenes A-C Used in This Study
Since, as mentioned above, several catalytic systems are
known to promote the hydroamination of allenes with
primary amines, we briefly investigated if Cat1 was efficient
as well (Table 1, entries 1-3). In the presence of 5 mol %
of Cat1, we were pleased to observe that after 12 h at 70
°C, aniline reacted with 1,1-dimethylallene A to afford a 60/
40 mixture of N-allyl- and N,N′-diallylaniline in 95% yield
(entry 1). Clearly, the N,N′-diallylaniline results from the
addition of the primarily formed N-allylaniline on allene A,
which gives a clear indication that secondary arylamines are
suitable substrates for our catalytic system. Mesitylamine and
even the strongly basic and bulky tert-butylamine react with
A, although under more drastic conditions, giving the
secondary allylamines in 74 and 54% yield, respectively
(entries 2 and 3).
(7) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc.
1992, 114, 1708–1719.
(8) (a) Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123,
2923–2924. (b) Ayinla, R. O.; Schafer, L. L. Inorg. Chim. Acta 2006, 359,
3097–3102.
(9) (a) Derenzi, A.; Ganis, P.; Panunzi, A.; Vitagliano, A.; Valle, G.
J. Am. Chem. Soc. 1980, 102, 1722–1723. (b) Hodjatkachani, H.; Perie,
J. J.; Lattes, A. Chem. Lett. 1976, 405–408.
(10) Besson, L.; Gore, J.; Cazes, B. Tetrahedron Lett. 1995, 36, 3857–
3860.
(11) Al-Masum, M.; Meguro, M.; Yamamoto, Y. Tetrahedron Lett. 1997,
38, 6071–6074.
(12) For recent reviews on gold chemistry: (a) Li, Z.; Brouwer, C.; He,
C Chem. ReV. 2008, 108, 3239–3265. (b) Arcadi, A. Chem. ReV. 2008,
108, 3266–3325. (c) Jime´nez-Nu´n˜ez, E.; Echavarren, A. M. Chem. ReV.
2008, 108, 3326–3350. (d) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem.
ReV. 2008, 108, 3351–3378. (e) Patil, N. T.; Yamamoto, Y. Chem. ReV.
2008, 108, 3395–3442. (f) Shen, H. C. Tetrahedron 2008, 64, 3885–3903.
(g) Widenhoefer, R. A. Chem.sEur. J. 2008, 14, 5382–5391. (h) Krause,
N.; Belting, V.; Deutsch, C.; Erdsack, J.; Fan, H. T.; Gockel, B.; Hoffmann-
Roder, A.; Morita, N.; Volz, F. Pure Appl. Chem. 2008, 80, 1063–1069.
(i) Hashmi, A. S. K. Chem. ReV. 2007, 107, 3180–3211. (j) Fu¨rstner, A.;
Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410–3449. (k) Gorin,
D. J.; Toste, F. D. Nature 2007, 446, 395–403.
We then turned our attention to secondary (aryl)(alkyl)-
amines using again 5 mol % of Cat1 (Table 1, entries 4-9).
(13) For a recent review on gold-catalyzed hydroamination of allenes,
see: Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 4555–4563.
(14) (a) Nishina, N.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45,
3314–3317. (b) Nishina, N.; Yamamoto, Y. Synlett 2007, 1767–1770.
(15) Kinder, R. E.; Zhang, Z.; Widenhoefer, R. A. Org. Lett. 2008, 10,
3157–3159.
(17) (a) Lavallo, V.; Canac, Y.; Pra¨sang, C.; Donnadieu, B.; Bertrand,
G. Angew. Chem., Int. Ed. 2005, 44, 5705–5709. (b) Lavallo, V.; Canac,
Y.; DeHope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005,
44, 7236–7239. (c) Jazzar, R.; Dewhurst, R. D.; Bourg, J.-B.; Donnadieu,
B.; Canac, Y.; Bertrand, G. Angew. Chem., Int. Ed. 2007, 46, 2899–2902.
(d) Jazzar, R.; Bourg, J.-B.; Dewhurst, R. D.; Donnadieu, B.; Bertrand, G.
J. Org. Chem. 2007, 72, 3492–3499.
(16) (a) Lavallo, V.; Frey, G. D.; Kousar, S.; Donnadieu, B.; Bertrand,
G. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569–13573. (b) Frey, G. D.;
Dewhurst, R. D.; Kousar, S.; Donnadieu, B.; Bertrand, G. J. Organomet.
Chem. 2008, 693, 1674–1682.
(18) Lavallo, V.; Frey, G. D.; Donnadieu, B.; Soleilhavoup, M.; Bertrand,
G. Angew. Chem., Int. Ed. 2008, 47, 5224–5228.
Org. Lett., Vol. 11, No. 15, 2009
3167