3636
I. Im et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3632–3636
19 showed À24.5 and À26.3 kcal/mol, respectively. Comparison of
the interaction energy of the ortho (9, À21.9 kcal/mol), meta (8,
À22.2 kcal/mol), and para (10, À20.0 kcal/mol) position of the pyr-
idine nitrogen showed a parallel results with the biological activi-
ties, suggesting that the meta position could prefer the orientation
for the hydrogen bond. Compound 12–16 with additional hydro-
gen bond acceptor at 2-position of the pyridine ring might disturb
the optimal hydrogen bond of the pyridyl nitrogen showing the
less interaction energies (À19.9 kcal/mol to À23.5 kcal/mol).
Although weak inhibitors of benzamide analogs, 17–18 could form
hydrogen bonds with His161 (À24.2 kcal/mol for 17, À22.6 kcal/
mol for 18), the distance between ester carbonyl carbon and the
nucleophilic –SH group of Cys might be changed unfavorably
resulting in weak or no inhibitory activity.
Medicine and Public Health, University of Wisconsin, Madison,
WI) for supplying us with cDNA encoding HRV16.
References and notes
1. (a) Couch, R. B., 3rd ed.. In Fields Virology; Fields, B. N., Knipe, D. M., Howley, P.
M., Chanock, R. M., Monath, T. P., Melnick, J. L., Roizman, B., Eds.; Lippincott-
Raven: Philadelphia, 1996; Vol. 1, p 713. Chapter 23; (b) McKinlay, M. A.;
Pevear, D. C.; Rossmann, M. G. Annu. Rev. Microbiol. 1992, 46, 635; (c) Phillpotts,
R. J.; Tyrrell, D. A. J. Br. Med. Bull. 1985, 41, 386; (d) Gwaltney, J. M. In Principles
and Practices of Infectious Diseases; Mandell, G. L., Douglas, R. G., Bennett, J. E.,
Eds.; John Wiley & Sons: New York, 1985; p 351. Chapter 38; (e) Gwaltney, J. M.
In Viral Infections of Humans; Evans, A. S., Ed.; Plenum: New York, 1982; p 491.
Chapter 20.
2. (a) Rueckert, R. R., 3rd ed.. In Fields Virology; Fields, B. N., Knipe, D. M., Howley,
P. M., Chanock, R. M., Monath, T. P., Melnick, J. L., Roizman, B., Eds.; Lippincott-
Raven: Philadelphia, 1996; Vol. 1, p 609. Chapter 21; (b) Kräusslich, H.-G.;
Wimmer, E. Annu. Rev. Biochem. 1988, 57, 701.
3. Phillpotts, R. J.; Tyrrell, D. A. Br. Med. Bull. 1985, 41, 386.
4. Guiles, J. W. Exp. Opin. Ther. Pat. 1997, 7, 123.
5. Wang, Q. M. Prog. Drug. Res. 1999, 52, 197.
6. Wang, Q. M.; Chen, S. H. Curr. Protein Pept. Sci. 2007, 8, 19.
7. Leong, L. E. C.; Walker, P. A.; Porter, A. G. J. Biol. Chem. 1993, 268, 25735.
8. Matthews, D. A.; Smith, W. W.; Ferre, R. A.; Condon, B.; Budahazi, G.; Sisson,
W.; Villafranca, J. E.; Janson, C. A.; McElroy, H. E.; Gribskov, C. L.; Worland, S.
Cell 1994, 77, 761.
To search for effective moieties other than the 2-furoyl group, a
series of 5-halo-pyridinyl esters from various carboxylic acids was
synthesized and tested. This R2 carboxylic acids were expected to
provide site specificity at S2 hydrophobic pocket and affect the
covalently connected binding mode at the active site. Most com-
pounds showed moderate-to-good inhibitory effects at 1 lM ex-
cept for 29 and 31 (Table 2). Compounds with thiophen-2-
carbonyl (20), benzoyl (21), phenylpropanoyl groups (36), and cin-
namoyl (37) showed lower activities than did the 2-furoyl analogs
(7 and 11). Substitution of the 5 position of the furan ring with aro-
matic groups allowed retention of good activity (22–25). The steric
effect of the additional aromatic groups could stabilize the post-
9. Witherell, G. Curr. Opin. Investig. Drugs 2000, 1, 297.
10. Dragovich, P. S. Exp. Opin. Ther. Pat. 2001, 11, 177.
11. Leung-Toung, R.; Zhao, Y.; Li, W.; Tam, T. F.; Karimian, K.; Spino, M. Curr. Med.
Chem. 2006, 13, 547.
12. Hayden, F. G.; Turner, R. B.; Gwaltney, J. M.; Chi-Burris, K.; Gersten, M.; Hsyu,
P.; Patick, A. K.; Smith Iii, G. J.; Zalman, L. S. Antimicrob. Agents. Chemother.
2003, 47, 3907.
13. Dragovich, P. S.; Prins, T. J.; Zhou, R.; Johnson, T. O.; Hua, Y.; Luu, H. T.; Sakata, S.
K.; Brown, E. L.; Maldonado, F. C.; Tuntland, T.; Lee, C. A.; Fuhrman, S. A.;
Zalman, L. S.; Patick, A. K.; Matthews, D. A.; Wu, E. Y.; Guo, M.; Borer, B. C.;
Nayyar, N. K.; Moran, T.; Chen, L.; Rejto, P. A.; Rose, P. W.; Guzman, M. C.;
Dovalsantos, E. Z.; Lee, S.; McGee, K.; Mohajeri, M.; Liese, A.; Tao, J.; Kosa, M. B.;
Liu, B.; Batugo, M. R.; Gleeson, J. P. R.; Wu, Z. P.; Liu, J.; Meador Iii, J. W.; Ferre, R.
A. J. Med. Chem. 2003, 46, 4572.
14. Reich, S. H.; Johnson, T.; Wallace, M. B.; Kephart, S. E.; Fuhrman, S. A.; Worland,
S. T.; Matthews, D. A.; Hendrickson, T. F.; Chan, F.; Meador Iii, J.; Ferre, R. A.;
Brown, E. L.; DeLisle, D. M.; Patick, A. K.; Binford, S. L.; Ford, C. E. J. Med. Chem.
2000, 43, 1670.
reaction state by
p
-stacking interaction with His4022 rather than
tight binding to S2 pocket. The 2-naphthoyl (26), 1-naphthoyl
(27), and imidazole (28) groups were useful building blocks, show-
ing potent inhibitory activities (IC50 of 290 nM for 28). However,
arylation of the imidazole ring of 28 showed twofold decrease in
activity (30), which could be caused by unfavorable constraint
compared to furan ring.
In further efforts to replace the furoyl ring with other heterocy-
clic carboxylate moieties, isoxazole and oxazole groups were inves-
tigated. In the case of 3-methylisooxazole derivative, 29, the
replaced position of furan oxygen by carbon atom resulted in the
loss of activity significantly. However, oxazole derivatives (31–
35) demonstrated a broad range of inhibitory activities depending
on substitutions at the 2 position of the oxazole group. A cinnam-
yloxazole analog, 34, showed the highest activity among these
15. Hamdouchi, C.; Sanchez-Martinez, C.; Gruber, J.; Del Prado, M.; Lopez, J.; Rubio,
A.; Heinz, B. A. J. Med. Chem. 2003, 46, 4333.
16. Maugeri, C.; Alisi, M. A.; Apicella, C.; Cellai, L.; Dragone, P.; Fioravanzo, E.;
Florio, S.; Furlotti, G.; Mangano, G.; Ombrato, R.; Luisi, R.; Pompei, R.; Rincicotti,
V.; Russo, V.; Vitiello, M.; Cazzolla, N. Bioorg. Med. Chem. 2008, 16, 3091.
17. Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J. R.; Hilgenfeld, R. Science 2003,
300, 1763.
18. Ghosh, A. K.; Xi, K.; Grum-Tokars, V.; Xu, X.; Ratia, K.; Fu, W.; Houser, K. V.;
Baker, S. C.; Johnson, M. E.; Mesecar, A. D. Bioorg. Med. Chem. Lett. 2007, 17,
5876.
compounds with 87% inhibition at 1 lM and an IC50 value of
690 nM. Lower electron density of oxazol ring may result in weak-
er binding affinity than furan or imidazol moiety, but additional
hydrophobic phenyl group in a proper position connected to 2-
oxazolic position with two carbon chain (34) significantly en-
hanced the inhibitory activity compared to the compounds with
shorter chains or bulky aromatic groups (31–33, 35).
In conclusion, 31 heteroaromatic esters were synthesized and
screened as non-peptidic inhibitors against HRV 3Cpro. Compound
7, which was one of the most potent inhibitors in an earlier series,
with activity against both SARS 3CLpro and HAV 3Cpro, was also
found to be the most potent in the current work (IC50 of 80 nM).
Substitution of 5-halopyridine with various heteroaromatic rings
resulted in the discovery of the 4-quinolinone group as an alterna-
tive key structure. Further optimization of 4-quinolinone ester
analogs as Gln skeleton mimics is underway, with the aim of
enhancing inhibitory activities.
19. Blanchard, J. E.; Elowe, N. H.; Huitema, C.; Fortin, P. D.; Cechetto, J. D.; Eltis, L.
D.; Brown, E. D. Chem. Bio. 2004, 11, 1445.
20. Kuo, C. J.; Liu, H. G.; Lo, Y. K.; Seong, C. M.; Lee, K. I.; Jung, Y. S.; Liang, P. H. FEBS
Lett. 2009, 583, 549.
21. Zhang, J.; Pettersson, H. I.; Huitema, C.; Niu, C.; Yin, J.; James, M. N. G.; Eltis, L.
D.; Vederas, J. C. J. Med. Chem. 2007, 50, 1850.
22. Ghosh, A. K.; Gong, G.; Grum-Tokars, V.; Mulhearn, D. C.; Baker, S. C.; Coughlin,
M.; Prabhakar, B. S.; Sleeman, K.; Johnson, M. E.; Mesecar, A. D. Bioorg. Med.
Chem. Lett. 2008, 18, 5684.
23. Huitema, C.; Zhang, J.; Yin, J.; James, M. N. G.; Vederas, J. C.; Eltis, L. D. Bioorg.
Med. Chem. 2008, 16, 5761.
24. Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.;
Combs, A. Tetrahedron Lett. 1998, 39, 2941.
25. Nolt, M. B.; Smiley, M. A.; Varga, S. L.; McClain, R. T.; Wolkenberg, S. E.;
Lindsley, C. W. Tetrahedron 2006, 62, 4698.
26. The HRV16 3Cpro coding region was amplified by PCR, subcloned into the
pTYB12 expression vector, and transformed into E. coli strain BL21(DE3).
HRV16 3Cpro was purified using the IMPACT-CN system (New England Biolabs,
Beverly, MA). A protease stock solution was maintained in 20 mM HEPES/
NaOH, 100 mM NaCl, 1 mM EDTA, and 1 mM dithiothreitol (pH 7.9).
27. Assays were performed at 30 °C in 96-well microplates in reaction volumes of
100 lL with 50 mM Tris (pH 7.6), 1 mM EDTA, 50 lM substrate, 200 nM HRV16
3Cpro, and various concentrations of test compounds. Inhibitors and enzymes
were incubated for 10 min in reaction buffer and reactions were initiated by
addition of FRET-substrate. Fluorescence values were monitored at 340 nm
(excitation) and 440 nm (emission). Heteroaromatic esters were initially tested
at 1 lM. Mean % inhibition was calculated from 3 to 4 repeated experiments.
IC50 values of six potent inhibitors were determined using various
concentrations with three independent experiments.
Acknowledgments
This study was supported by a grant of the National R&D
Program for Cancer Control, Ministry of Health & Welfare, Republic
of Korea (0720430). We thank Dr. Wai-Ming Lee (School of