4972 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 15
Liedtke et al.
starting materials (Table 1). In a cell free mPGES-1 assay,
many of our test compounds exceeded 3 in potency
(Table 2). The incorporation of arylsulfonimides led to a
3.2-fold increase in in vitro potency against mPGES-1
compared to 3. Moreover, the good submicromolar 5-
LOX inhibitory potency remains unaffected for those sul-
fonimides, whereas the COX inhibition could be casually
reduced compared to our lead 3.
These primary results reveal that the structure of 3 can be
successfully modified to yield potent in vitro inhibitors of
mPGES-1. Additional investigations will provide in-depth
information regarding the effect of further structural modifi-
cations of our lead compound and of selective mPGES-1
inhibition in vivo. In this context, mPGES-1 appears to be a
promising future target for the development of anti-inflam-
matory drugs.
Mass Spectrometry (Chemisches Zentralinstitut, Univer-
sity of Tuebingen), and Dr. Dominik Hauser for helpful
discussions. This research on mPGES-1 inhibitors was
financially supported by the Merckle/Ratiopharm Corpo-
rate Group, Blaubeuren, Germany, and the Fonds der
Chemischen Industrie, Germany.
Supporting Information Available: Eicosanoid pathway, com-
parison of the Lipinski rule criteria, synthetic procedures,
routine spectroscopic data, HRMS and HPLC data, biological
testing methods. This material is available free of charge via the
References
(1) Koeberle, A.; Siemoneit, U.; Buhring, U.; Northoff, H.; Laufer, S.;
Albrecht, W.; Werz, O. Licofelone suppresses prostaglandin
E2 formation by interference with the inducible microsomal pros-
taglandin E2 synthase-1. J. Pharmacol. Exp. Ther. 2008, 326, 975–
982.
(2) Black, A. T.; Gray, J. P.; Shakarjian, M. P.; Mishin, V.; Laskin, D.
L.; Heck, D. E.; Laskin, J. D. UVB light upregulates prostaglandin
synthases and prostaglandin receptors in mouse keratinocytes.
Toxicol. Appl. Pharmacol. 2008, 232, 14–24.
(3) Scholich, K.; Geisslinger, G. Is mPGES-1 a promising target for
pain therapy?. Trends Pharmacol. Sci. 2006, 27, 399–401.
(4) Wang, M.; Song, W. L.; Cheng, Y.; FitzGerald, G. A. Microsomal
prostaglandin E synthase-1 inhibition in cardiovascular inflamma-
tory disease. J. Intern. Med. 2008, 263, 500–505.
(5) Sampey, A. V.; Monrad, S.; Crofford, L. J. Microsomal prosta-
glandin E synthase-1: the inducible synthase for prostaglandin E2.
Arthritis Res. Ther. 2005, 7, 114–117.
Experimental Section
General. All reagents and solvents were of commercial quality
and used without further purification. HPLC analyses (see
Supporting Information for details) were employed for estab-
lishing the grade of purity of each test compound. The purity of
all tested compounds is g95%, if not denoted otherwise.
Synthesis of the Dihydropyrrolizinyl Acetic and Propionic Acid
Derivatives. The three-step general synthetic procedure for the
derivatization of the free acid position with varied sulfonimides
is specified in the Supporting Information.15
Preparation and Analytical Characterization of Exemplified
Test Compounds. 2-(6-(4-Chlorophenyl)-2,2-dimethyl-7-phenyl-
2,3-dihydro-1H-pyrrolizin-5-yl)-N-tosylacetamide (11d). According
to general procedure, 11d was obtained from [6-(4-chlorophenyl)-
2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl]acetic acid
(3) (0.5 g, 1.3 mmol) and toluene-4-sulfonamide (0.26 g, 1.5 mmol)
after 40 h at room temperature. The crude product was recrystal-
(6) Friesen, R. W.; Mancini, J. A. Microsomal prostaglandin E2
synthase-1 (mPGES-1): a novel anti-inflammatory therapeutic
target. J. Med. Chem. 2008, 51, 4059–4067.
(7) Jegerschoeld, C.; Pawelzik, S.-C.; Purhonen, P.; Bhakat, P.;
Gheorghe, K. R.; Gyobu, N.; Mitsuoka, K.; Morgenstern, R.;
Jakobsson, P.-J.; Hebert, H. Structural basis for induced formation
of the inflammatory mediator prostaglandin E2. Proc. Natl. Acad.
Sci. U.S.A. 2009, 105, 11110–11115.
(8) Riendeau, D.; Aspiotis, R.; Ethier, D.; Gareau, Y.; Grimm, E. L.;
Guay, J.; Guiral, S.; Juteau, H.; Mancini, J. A.; Methot, N.; Rubin,
J.; Friesen, R. W. Inhibitors of the inducible microsomal prosta-
glandin E2 synthase (mPGES-1) derived from MK-886. Bioorg.
Med. Chem. Lett. 2005, 15, 3352–3355.
(9) Fischer, L.; Hornig, M.; Pergola, C.; Meindl, N.; Franke, L.;
Tanrikulu, Y.; Dodt, G.; Schneider, G.; Steinhilber, D.; Werz, O.
The molecular mechanism of the inhibition by licofelone of the
biosynthesis of 5-lipoxygenase products. Br. J. Pharmacol. 2007,
152, 471–480.
lized from isopropanol to yield 0.28
g (40%) of 11d:
1
C30H29ClN2O3S (Mr = 533.08); H NMR (DMSO-d6) δ (ppm)
1.21 (s, 6H, (-CH3)2), 2.40 (s, 3H, tosyl-CH3), 2.70 (s, 2H,
C1-H2), 3.40 (s, 2H, CH2-CON<), 3.47 (s, 2H, C3-H2), 6.84-
3
7.28 (m, 9H, aryl-H), 7.43-7.47 (d, 2H, J=8.1 Hz, tosyl-C3-/
C5-H), 7.79-7.83 (d, 2H, 3J=8.3 Hz, tosyl-C2-/C6-H); IR (ATR)
3300, 2960, 1725, 1599, 1531, 1489, 1416, 1394, 1354, 1316,
1213, 1189, 1175, 1119, 1087, 1043, 1014, 978, 878, 837, 821, 812,
767, 735, 722, 701, 686, 668, 656 cm-1; HRMS (FT-ICR-MS)
m/z [M þ H]þ calcd for C30H30ClN2O3S 533.166 02, found
533.166 15.
(10) Laufer, S.; Striegel, H. G.; Dannhardt, G. Preparation of N-
Sulfonylpyrrolizineacetamides and Analogs as Cyclooxygenase
and Lipoxygenase Inhibitors. Patent 94-4419247[4419247], 22.
DE. 1-6-1994, 1995 (Merckle GmbH, Germany).
2-(6-(4-Chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-
pyrrolizin-5-yl)-N-tosylpropanamide (11f). According to general
procedure, 11f was obtained from 3-(6-(4-chlorphenyl)-2,2-
dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl)propionic
acid (10b) (0.5 g, 1.3 mmol) and toluene-4-sulfonamide (0.26 g,
1.5 mmol) after 40 h at room temperature. The crude product
was recrystallized from diisopropyl ether to yield 0.3 g (39%) of
11f: C31H31ClN2O3S (Mr = 547.11); 1H NMR (DMSO-d6)
δ (ppm) 1.18 (s, 6H, (-CH3)2), 2.36 (m, 5H, -CH2-CON<,
tosyl-CH3), 2.71 (m, 4H, C5-CH2/C1-H2), 3.61 (s, 2H, C3-H2),
6.89-7.33 (m, 9H, aryl-H), 7.36-7.40 (d, 2H, 3J=8.2 Hz, tosyl-
C3-/C5-H), 7.79-7.83 (d, 2H, 3J=8.2 Hz, tosyl-C2-/C6-H); IR
(ATR) 3234, 3149, 2956, 2843, 1723, 1597, 1530, 1486, 1428,
1409, 1330, 1186, 1171, 1121, 1121, 1085, 1013, 956, 861, 828,
810, 758, 694, 660, 631, 579, 556, 505 cm-1; MS (FAB) m/z (%)
546.1 (Mþ, 45); HPLC (HP1090) 11.3 min, 89.8%; HRMS (FT-
ICR-MS) m/z [M þ H]þ calcd for C31H32ClN2O3S 547.181 67,
found 547.181 78.
(11) Keck, P. R. W. E. F. Arylpyrrolizin-Derivate als Inhibitoren der
mPGES1. Diploma Thesis, University of Tuebingen, 2008.
(12) Dannhardt, G.; Lehr, M. Antiinflammatory 2,3-dihydro-1H-pyr-
rolizines. XIII. Isomeric (diaryldihydropyrrolizinyl)acetic acids and
2-(diaryldihydropyrrolizinyl)ethanols. Arch. Pharm. (Weinheim, Ger.)
1988, 321, 159–162.
(13) Dannhardt, G.; Lehr, M. Antiphlogistic 2,3-dihydro-1H-pyrroli-
zines. 14. Isomer arrangement of diaryldihydropyrrolizinyl-formic
and -propionic acids. Arch. Pharm. (Weinheim, Ger.) 1988, 321,
545–549.
(14) Laufer, S. A.; Augustin, J.; Dannhardt, G.; Kiefer, W. (6,7-
Diaryldihydropyrrolizin-5-yl)acetic acids, a novel class of potent
dual inhibitors of both cyclooxygenase and 5-lipoxygenase. J. Med.
Chem. 1994, 37, 1894–1897.
(15) Laufer, S.; Striegel, H. G.; Dannhardt, G. [a]-Annelated Pyrrole
Derivatives and Pharmaceutical Use Thereof. WO 9532972 (A1),
1995.
(16) Dannhardt, G.; Steindl, L. Antiinflammatory 2,3-dihydro-1H-
pyrrolizines. III: aminomethylation and arylthiolation of 6,7-dia-
ryl-2,3-dihydro-1H-pyrrolizines. Arch. Pharm. (Weinheim, Ger.)
1986, 319, 65–69.
(17) Dannhardt, G.; Lehr, M. In-vitro evaluation of 5-lipoxygenase and
cyclooxygenase inhibitors using bovine neutrophils and platelets
and HPLC. J. Pharm. Pharmacol. 1992, 44, 419–424.
Acknowledgment. We are grateful to Gertrud Kleefeld
for assistance with biological testing, the Department of