10.1002/anie.201802746
Angewandte Chemie International Edition
COMMUNICATION
guarantee highest affinity, we additionally developed a novel
MCH labeling protocol in fixed and permeabilized cells. By
apprehending that consecutive histidines are prone to chemical
modification during chemical fixation, we examined the direct
labeling of intracellular His-tagged proteins by MCH fluorescent
probes using glyoxal[23]. For comparison, we chemically arrested
mammalian cells using conventional paraformaldehyde (PFA)[24]
or glyoxal and imaged labeling using cyclic trisNTA coupled to the
bright fluorophore Alexa647 (40) by confocal laser-scanning
microscopy (CLSM). HeLa Kyoto cells transiently expressing His10-
mEGFPLaminA, located at the nuclear envelope, revealed a strong
and precise labeling at picomolar probe concentrations after
glyoxal treatment, while PFA-treated cells showed no significant
labeling under similar conditions (Figure 3a/b). We therefore
hypothesized that the accessibility of the His-tag is largely
improved using our advanced MCH labeling protocol. For a final
statistic evaluation of the MCH scaffolds, we added 100 pM of
either cyclic trisNTAsCy5 (18) or linear trisNTAsCy5 (34) probes to
Keywords: minimal tag • super-chelators • biosensors • protein
labeling • target screening
[1]
a) I. Chen, A. Y. Ting, Curr. Opin. Biotechnol. 2005, 16, 35-40; b) E.
Toprak, P. R. Selvin, Annu. Rev. Biophys. Biomol. Struct. 2007, 36,
349-369; c) A. F. L. Schneider, C. P. R. Hackenberger, Curr. Opin.
Biotechnol. 2017, 48, 61-68; d) M. J. Hinner, K. Johnsson, Curr Opin
Biotechnol 2010, 21, 766-776; e) T. Schlichthaerle, M. T. Strauss,
F. Schueder, J. B. Woehrstein, R. Jungmann, Curr. Opin.
Biotechnol. 2016, 39, 41-47.
[2]
I. Nikic, T. Plass, O. Schraidt, J. Szymanski, J. A. Briggs, C. Schultz,
E. A. Lemke, Angew. Chem. Int. Ed. 2014, 53, 2245-2249.
X. Chen, Y.-W. Wu, Org. Biomol. Chem. 2016, 14, 5417-5439.
a) J. Porath, J. A. N. Carlsson, I. Olsson, G. Belfrage, Nature 1975,
258, 598-599; b) E. Hochuli, H. Döbeli, A. Schacher, J. Chrom. A
1987, 411, 177-184.
[3]
[4]
[5]
a) A. N. Kapanidis, Y. W. Ebright, R. H. Ebright, J. Am. Chem. Soc.
2001, 123, 12123-12125; b) E. G. Guignet, R. Hovius, H. Vogel, Nat.
Biotechnol. 2004, 22, 440-444.
[6]
[7]
S. Lata, A. Reichel, R. Brock, R. Tampe, J. Piehler, J. Am. Chem.
Soc. 2005, 127, 10205-10215.
a) A. Tinazli, J. Tang, R. Valiokas, S. Picuric, S. Lata, J. Piehler, B.
Liedberg, R. Tampé, Chemistry 2005, 11, 5249-5259; b) A.
Kollmannsperger, A. Sharei, A. Raulf, M. Heilemann, R. Langer, K.
F. Jensen, R. Wieneke, R. Tampe, Nat. Commun. 2016, 7, 10372;
c) K. Gatterdam, E. F. Joest, M. S. Dietz, M. Heilemann, R. Tampé,
Angew Chem Int Ed Engl 2018.
His10-
glyoxal-fixed HeLa Kyoto cells transiently expressing
mEGFPLaminA. Hereby, we mimicked SPR conditions and live cell
environment by subsequently adding 10 mM imidazole (Figure
S10). Afterwards, we imaged the cells by CLSM and analyzed the
ratio of bound probe relative to the His10-mEGFPLaminA by
densitometry (Figure 3c). Strikingly, we observed approximately
3-4 times more cyclic trisNTAsCy5 (18) bound to His10-mEGFPLaminA
in contrast to the linear trisNTAsCy5 (34). We further delivered the
cyclic trisNTA probe into the living cells and observed a highly
specific labeling of His10-mEGFPLaminA (Figure S11).
[8]
[9]
S. Lata, M. Gavutis, R. Tampe, J. Piehler, J. Am. Chem. Soc. 2006,
128, 2365-2372.
V. Roullier, S. Clarke, C. You, F. Pinaud, G. G. Gouzer, D. Schaible,
V. Marchi-Artzner, J. Piehler, M. Dahan, Nano. Lett. 2009, 9, 1228-
1234.
[10]
[11]
A. Reichel, D. Schaible, N. Al Furoukh, M. Cohen, G. Schreiber, J.
Piehler, Anal. Chem. 2007, 79, 8590-8600.
a) C. L. van Broekhoven, J. G. Altin, Biochim. Biophys. Acta 2005,
1716, 104-116; b) S. Lata, M. Gavutis, J. Piehler, J. Am. Chem. Soc.
2006, 128, 6-7.
[12]
V. Platt, Z. Huang, L. Cao, M. Tiffany, K. Riviere, F. C. Szoka, Jr.,
Bioconjug. Chem. 2010, 21, 892-902.
In conclusion, we systematically worked out the importance of the
scaffold design of trivalent MCHs affecting affinity and kinetic
stability. Corresponding fundamental distinctions were visualized
by a comprehensive SPR study of all MCHs, differing in their basic
structural arrangement: linear, cyclic, dendritic. Furthermore, we
directly contrasted cyclic trisNTA and linear trisNTA fluorophore
conjugates for the tracing of intracellular His-tagged proteins. We
therefore assigned a new glyoxal-fixation method for the first time
to MCH labeling and thereby enabled the use of picomolar probe
concentrations. Ultimately, we defined cyclic trisNTA as superior
for in-vitro and cell applications, compared to the other described
[13]
[14]
S. Lata, J. Piehler, Anal. Chem 2005, 77, 1096-1105.
R. Valiokas, G. Klenkar, A. Tinazli, A. Reichel, R. Tampé, J. Piehler,
B. Liedberg, Langmuir 2008, 24, 4959-4967.
[15]
[16]
[17]
[18]
J. S. Kim, C. A. Valencia, R. Liu, W. Lin, Bioconjug. Chem. 2007,
18, 333-341.
M. Braner, A. Kollmannsperger, R. Wieneke, R. Tampé, Chem. Sci.
2016, 7, 2646-2652.
R. Wei, V. Gatterdam, R. Wieneke, R. Tampé, U. Rant, Nat.
Nanotechnol. 2012, 7, 257.
a) G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I.
Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampe, D. Choquet, L.
Cognet, Biophys. J. 2010, 99, 1303-1310; b) O. Rossier, V. Octeau,
J. B. Sibarita, C. Leduc, B. Tessier, D. Nair, V. Gatterdam, O.
Destaing, C. Albiges-Rizo, R. Tampe, L. Cognet, D. Choquet, B.
Lounis, G. Giannone, Nat. Cell Biol. 2012, 14, 1057-1067.
a) R. Wombacher, M. Heidbreder, S. van de Linde, M. P. Sheetz,
M. Heilemann, V. W. Cornish, M. Sauer, Nat. Methods 2010, 7, 717-
719; b) R. Wieneke, A. Raulf, A. Kollmannsperger, M. Heilemann,
R. Tampe, Angew. Chem. Int. Ed. 2015, 54, 10216-10219.
Z. Huang, P. Hwang, D. S. Watson, L. Cao, F. C. Szoka, Jr.,
Bioconjug. Chem. 2009, 20, 1667-1672.
A. E. Backmark, N. Olivier, A. Snijder, E. Gordon, N. Dekker, A. D.
Ferguson, Protein Sci. 2013, 22, 1124-1132.
D. J. O'Shannessy, M. Brigham-Burke, K. K. Soneson, P. Hensley,
I. Brooks, Anal. Biochem. 1993, 212, 457-468.
K. N. Richter, N. H. Revelo, K. J. Seitz, M. S. Helm, D. Sarkar, R. S.
Saleeb, E. D'Este, J. Eberle, E. Wagner, C. Vogl, D. F. Lazaro, F.
Richter, J. Coy-Vergara, G. Coceano, E. S. Boyden, R. R. Duncan,
S. W. Hell, M. A. Lauterbach, S. E. Lehnart, T. Moser, T. F. Outeiro,
P. Rehling, B. Schwappach, I. Testa, B. Zapiec, S. O. Rizzoli, EMBO
J 2018, 37, 139-159.
trivalent chelator heads. Thus, we suggest
a
detailed
[19]
nomenclature for MCH molecules or to henceforth limit the simple
term trisNTA to cyclam-Glu-trisNTA (cyclic trisNTA) in order to
avoid obscurities. We hypothesize that, in combination with
established MCH probe live-cell delivery techniques, like cell-
squeezing or genetically encoded nanopores, these structural
details and optimized trivalent MCHs can potentially enable
chemically induced dimerization. Finally, these nanotools will
open up new perspectives for ultra-small, non-disturbing and
high-affinity labeling to gain deeper insights into dynamic cellular
structures and processes.
[20]
[21]
[22]
[23]
[24]
A. Kollmannsperger, A. Sharei, A. Raulf, M. Heilemann, R. Langer,
K. F. Jensen, R. Wieneke, R. Tampé, Nat Commun 2016, 7, 10372.
Acknowledgements
We thank Katrin Schanner for technical assistance, Drs. Ralph
Wieneke, Markus Braner, and the entire lab for the helpful
discussions.
This article is protected by copyright. All rights reserved.