pubs.acs.org/joc
Peterson7 olefination reaction. Although these protocols
A General Copper-Catalyzed Coupling of Azoles with
Vinyl Bromides
provided access to N-vinylazoles, they suffered limitation
in scope, selectivity, and generality. Furthermore, some
procedures required harsh reaction conditions. A straight-
forward transition-metal-catalyzed N-vinylation of azoles
by vinyl halides is an attractive alternative for the known
methods. Palladium-catalyzed efficient vinylation of azoles
with vinyl bromides has been reported.8 Nevertheless, the use
of expensive palladium limited the attractiveness of these
methods for industrial applications. As far as copper-
mediated methods were concerned, which had been widely
used in many C-N bond formation,9 N-vinylation with
vinyl boronic acids displayed the major advantage of pro-
ceeding at room temperature but suffered from requirements
for stoichiometric amount of cupric acetate.10 More recently,
copper-catalyzed methods involving N,N-bis(pyridin-2-
ylmethylene)cyclohexane-1,2-diamine or L-proline as li-
gands enabled the coupling of vinyl bromides with azoles.11
These protocols only worked for (E)-β-bromostyrene.
The development of general, cheap, stereospecific syn-
thetic methodologies to create N-alkenylazoles is still cha-
llenging. Herein we would like to report copper-catalyzed
N-vinylation of azoles with various vinyl bromides involving
commercially available ethane-1,2-diamine as ligand.
Qian Liao, Yuxing Wang, Liyun Zhang, and Chanjuan Xi*
Key Laboratory of Bioorganic Phosphorus Chemistry &
Chemical Biology (Ministry of Education), Department of
Chemistry, Tsinghua University, Beijing, 100084 China
Received May 29, 2009
A copper-catalyzed methodology for the coupling of
vinyl bromides with azoles has been developed. This
protocol uses a combination of 10 mol % of copper
iodide and 20 mol % of ethylenediamine as catalyst.
The reaction proceeds with various azoles and vinyl
bromides, and the double bond geometry of vinyl bro-
mides is retained under the reaction conditions.
Initial attempts to prepare 1a by CuI-catalyzed cross-
coupling between indole 2a and R-bromostyrene 3a failed.
For example, the use of toluene as solvent, in combination
(7) Surprenant, S.; Chan, W. Y.; Berthelette, C. Org. Lett. 2003, 5, 4851–
4854.
(8) (a) Lebedev, A. Y.; Izmer, V. V.; Kazyul’kin, D. N.; Beletskaya, I. P.;
Voskoboynikov, A. Z. Org. Lett. 2002, 4, 623–626. (b) Dejli, J. R.; Legros, J.;
Bolm, C. Chem. Commun. 2005, 973–968. (c) Dehli, J. R.; Bolm, C. J. Org.
Chem. 2004, 69, 8518–8520. (d) Dehli, J. R.; Bolm, C. Adv. Synth. Catal.
2005, 347, 239–242.
N-Vinylazoles are important classes of building blocks in
organic synthesis and are also key structural motifs in many
medicaments. For instance, N-vinylazoles have been shown
to serve as monomers for the synthesis of poly(N-
vinylazoles),1 which could be used as semiconductors and
photosensitive materials. N-Vinylazoles have also been
found to display antifungal activity.2 Conventionally, pro-
tocols for their preparation included direct addition of azoles
to alkynes,3 alkylation of azoles with 1,2-dibromoethane,
followed by dehydrohalogenation of the corresponding
2-haloethylazole.4 Another way to prepare N-vinylazoles
involved creation of the carbon-carbon double bond by
Wittig-Horner,5 Horner-Wadsworth-Emmons,6 and
(9) For the latest examples of copper-catalyzed C-N bond formation,
see: (a) Jiang, B.; Tian, H.; Huang, Z.-G.; Xu, M. Org. Lett. 2008, 10, 2737–
2740. (b) Fukudome, Y.; Naito, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc.
2008, 130, 1820–1821. (c) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed.
2008, 47, 2109–2112. (d) Mao, J.; Hua, Q.; Guo, J.; Shi, D.; Ji, S. Synlett 2008,
2011–2016. (e) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450–1460. (f) Lu,
H.; Yuan, X.; Zhu, S.; Sun, C.; Li, C. J. Org. Chem. 2008, 73, 8665–8668. (g)
Martin, R.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 5521–5524. (h)
Cesati, R. R. I.; Dwyer, G.; Jones, R. C.; Hayes, M. P.; Yalamanchili, P.;
Casebier, D. S. Org. Lett. 2007, 9, 5617–5620. (i) Martin, R.; Larsen, C. H.;
Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 3379–3382. (j) He, G.; Wang,
J.; Ma, D. Org. Lett. 2007, 9, 1367–1369. (k) Yang, L.; Deng, G.; Wang,
D.-X.; Huang, Z.-T.; Zhu, J.-P.; Wang, M.-X. Org. Lett. 2007, 9, 1387–1390.
(l) Rivero, M. R.; Buchwald, S. L. Org. Lett. 2007, 9, 973–976. (m) Toumi,
M.; Couty, F.; Evano, G. Angew. Chem., Int. Ed. 2007, 46, 572–575. (n)
Yuan, X.; Xu, X.; Zhou, X.; Yuan, J.; Mai, L.; Li, Y. J. Org. Chem. 2007, 72,
1510–1513. (o) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400–5449. (p) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004,
248, 2337–2364. (q) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008,
108, 3054–3131. (r) Coste, A.; Karthikeyan, G.; Franςois, C.; Evano, G.
Angew. Chem., Int. Ed. 2009, 48, 4381–4385. (s) Xia, N.; Taillefer, M. Angew.
Chem., Int. Ed. 2009, 48, 337–339. (t) Monnier, F.; Taillefer, M. Angew.
Chem., Int. Ed. 2008, 47, 3096–3099. (u) Jiang, L.; Job, G. E.; Klapars, A.;
Buchwald, S. L. Org. Lett. 2003, 5, 3667–3669. (v) Jiang, D.; Fu, H.; Jiang,
Y.; Zhao, Y. J. Org. Chem. 2007, 72, 672–674.
(1) Brustolin, F.; Castelvetro, V.; Ciardelli, F.; Rugger, G.; Colligiani, A.
J. Polym. Sci., A: Polym. Chem. 2000, 39, 253–262.
(2) (a) Ogata, M.; Matsumoto, H.; Shimizu, S.; Kida, S.; Shiro, M.;
€
Tawara, K. J. Med. Chem. 1987, 30, 1348–1354. (b) Hormi, O. E. O.; Hirvela,
L. Tetrahedron Lett. 1993, 34, 6463–6466. (c) Gopal, D.; Rajagopalan, K.
Tetrahedron Lett. 1987, 28, 5327–5330.
(3) (a) Trofimov, B. A.; Tarasova, O. A.; Shemetova, M. A.; Afonin, A.
V.; Klyba, L. V.; Baikalova, L. V.; Mikhaleva, A. I. Russ. J. Org. Chem. 2003,
39, 408–414. (b) Trofimov, B. A.; Tarasova, O. A.; Mikhaleva, A. I.;
Kalinina, N. A.; Sinegovskaya, L. M.; Henkelmann, J. Synthesis 2000,
1585–1590. (c) Tzalis, D.; Koradin, C.; Knochel, P. Tetrahedron Lett.
1999, 40, 6193–6195. (d) Bourgeois, P.; Lucrece, J.; Dunogues, J. J. Hetero-
cycl. Chem. 1978, 15, 1543–1545.
(4) Iddon, B.; Hartley, D. J. Tetrahedron Lett. 1997, 38, 4647–4650.
(5) Maier, L.; Rist, G. Phosphorus Sulfur Relat. Elem. 1987, 32, 65–72.
(6) Qian, H.; Huang, X. Synth. Commun. 2000, 30, 1413–1417.
(10) (a) Lam, P. Y. S.; Vincent, G.; Bonne, D.; Clark, C. G. Tetrahedron
Lett. 2003, 44, 4927–4931. (b) Bolshan, Y.; Batey, R. A. Angew. Chem., Int.
Ed. 2008, 47, 2109–2112.
(11) (a) Dehli, J. R.; Bolm, C. J. Org. Chem. 2004, 69, 8518–8520. (b)
Wang, Z.; Bao, W.; Jiang, Y. Chem. Commun. 2005, 2849–2851. (c) Ouali, A.;
Laurent, R.; Caminade, A.-M.; Majoral, J.-P.; Taillefer, M. J. Am. Chem.
Soc. 2006, 128, 15990–15991. (d) Taillefer, M.; Ouali, A.; Renard, B.;
Spindler, J.-F. Chem.;Eur. J. 2006, 12, 5301–5313. (e) Bao, W.; Liu, Y.;
Lv, X. Synthesis 2008, 1911–1917.
DOI: 10.1021/jo901105r
r
Published on Web 07/15/2009
J. Org. Chem. 2009, 74, 6371–6373 6371
2009 American Chemical Society