C O M M U N I C A T I O N S
To conclude, the unprecedented dinuclear tuck-in-tuck-over tuck-
over dialkyl Tren-uranium(IV) complex 5 extends the palate of
novel chemistry which may be achieved with uranium and
nonmetallocene ligands, and the BPh2-functionalized complex 6
-
reveals a new double dearylation reaction for the BPh4 anion.
Acknowledgment. We thank the Royal Society, the EPSRC,
the University of Nottingham, and the NSCCS for support and Dr.
R. Bourne (Nottingham) for obtaining GC-MS data.
Supporting Information Available: Experimental, X-ray and
computational data for 5 and 6. This material is free of charge via the
Figure 2. Molecular structure of 6. Thermal ellipsoids set at 30%
probability; hydrogen atoms omitted for clarity. Selected bond lengths (Å):
U(1)-N(1) 2.193(6), U(1)-N(2) 2.262(6), U(1)-N(3) 2.277(6), U(1)-N(4)
2.573(6), U(1)-C(1) 2.644(9), U(1)-O(1) 2.565(5), B(1)-C(1) 1.493(11),
B(1)-C(16) 1.596(11), B(1)-C(22) 1.591(12).
References
(1) (a) Marks, T J.; Streitwieser, A. In The Chemistry of the Actinide Elements;
Katz J. J., Seaborg, G. T., Morss, L. R., Eds.; Chapman and Hall: New
York, 1986; Vol. 2, pp 1547-1587. (b) Burns, C. J.; Eisen, M. S. In The
Chemistry of the Actinide and Transactinide Elements; Morss, L. R.,
Edelstein, N. M., Fuger, J., Eds.; Springer: Dordrecht, 2006; Vol. 5, pp
2799-2910.
(2) Selected examples: (a) Roussel, P.; Scott, P. J. Am. Chem. Soc. 1998, 120,
1070. (b) Diaconescu, P. L.; Arnold, P. L.; Baker, T. A.; Mindiola, D. J.;
Cummins, C. C. J. Am. Chem. Soc. 2000, 122, 6108. (c) Korobkov, I.;
Gambarotta, S.; Yap, G. P. A. Angew. Chem., Int. Ed. 2002, 41, 3433. (d)
Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Science 2005, 309, 1835. (e)
Hayton, T. W.; Boncella, J. M.; Scott, B. L.; Palmer, P. D.; Batista, E. R.;
Hay, P. J. Science 2005, 310, 1941. (f) Ephritikhine, M. Dalton Trans.
2006, 2501. (g) Castro-Rodr´ıguez, I.; Meyer, K. Chem. Commun. 2006,
1353. (h) Summerscales, O. T.; Cloke, F. G. N.; Hitchcock, P. B.; Green,
J. C.; Hazari, N. Science 2006, 311, 829. (i) Fox, A. R.; Bart, S. C.; Meyer,
K.; Cummins, C. C. Nature 2008, 455, 341. (j) Cantat, T.; Graves, C. R.;
Scott, B. L.; Kiplinger, J. L. Angew. Chem., Int. Ed. 2009, 48, 3681. (k)
Fox, A. R.; Cummins, C. C. J. Am. Chem. Soc. 2009, 131, 5716.
(3) Liddle, S. T.; McMaster, J.; Mills, D. P.; Blake, A. J.; Jones, C.; Woodul,
W. D. Angew. Chem., Int. Ed. 2009, 48, 1077.
validate 6 and probe the B(1)-C(1) bond we carried out DFT
calculations on a full model of 6.8 The calculation reproduced the
metrical parameters and inspection of the Kohn-Sham orbitals,
and Mayer bond orders (B-C ) 1.33) confirm the manifestation
of a B(1)-C(1) π-bond perturbed by the polarizing uranium center.
2RCH2 + 2Et3NH+ + 2BPh4-f
-
(1)
-
2RC(H)BPh2 + 2Et3N + Ph2 + 2PhH + H2
-
BPh4 f BPh+2 + Ph2 + 2e-
(2)
(3)
(4)
(5)
-
BPh4 f BPh3 + 1/2Ph2 + e-
(4) Gardner, B. M.; McMaster, J.; Lewis, W.; Liddle, S. T. Chem. Commun.
2009, 2851.
-
BPh4 + H+ f BPh3 + PhH
(5) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. Angew. Chem., Int. Ed. 1997,
36, 774.
(6) For reactions forming uranium tuck-in metallocycles with silyl amides, see:
(a) Simpson, S. J.; Turner, H. W.; Andersen, R. A. Inorg. Chem. 1981, 20,
2991. (b) Boaretto, R.; Roussel, P.; Kingsley, A. J.; Munslow, I. J.; Sanders,
C. J.; Alcock, N. W.; Scott, P. Chem. Commun. 1999, 1701. (c) Boaretto,
R.; Roussel, P.; Alcock, N. W.; Kingsley, A. J.; Munslow, I. J.; Sanders,
C. J.; Scott, P. J. Organomet. Chem. 1999, 591, 174.
2S-BPh3 f S-BPh+2 + BPh4 + S
-
To shed light on the formation of 6, we analyzed the reaction mother
liquor using GC-MS, which revealed the presence of benzene and
biphenyl.8 Thus, the overall reaction can be represented by eq 1.
Monitoring the reaction by variable temperature 1H NMR spectroscopy
showed conversion of 5 to 6, and no intermediates were observed.8,14
The stoichiometry of eq 1 suggests that eqs 2-515 should be considered
(S ) solvent): (i) formation of BPh2+, eq 2, appears unlikely but could
be facilitated by a redox active uranium center, and this would account
for the generation of Ph2 and BPh2; (ii) eq 3 is known for BPh4- and
accounts for the formation of Ph2;16 (iii) attack of BPh3 by a carbanion
center with extrusion of Ph- (or PhH) seems unlikely on steric grounds,
but this cannot be ruled out;17 (iv) formation of C6H6 may be accounted
for with eq 4, point (iii), or direct extrusion of Ph- from BPh4- which
then abstracts H+ from Et3NH+ or the cyclometalated arm in an
acid-base reaction;18 (v) previous electrochemical studies have dem-
onstrated that eq 5 is viable,15 which would sustain eqs 3 and 4, generate
a BPh2+ of sufficient reactivity to allow nucleophilic attack by a carbanion
center, and regenerate BPh4- which is a potential source of Ph-.
(7) For a tuck-in tuck-over uranium metallocene, see: (a) Evans, W. J.; Miller,
K. A.; DiPasquale, A. G.; Rheingold, A. L.; Stewart, T. J.; Bau, R. Angew.
Chem., Int. Ed. 2008, 47, 5075.
(8) For full details, see the Supporting Information.
(9) Rapid metallocycle formation and H-D migration/scrambling has been
noted for U-Camidosilyl bonds previously; see refs 6a-c.
(10) For example, see: (a) Rousel, P.; Hitchcock, P. B.; Scott, P. Inorg. Chem.
1997, 36, 5716.
(11) Berthet, J. C.; Ephritikhine, M. Coord. Chem. ReV. 1998, 178-180, 83.
(12) Olmstead, M. M.; Power, P. P.; Weese, K. J. J. Am. Chem. Soc. 1987,
109, 2541.
(13) Zettler, F.; Hausen, H. D.; Hess, H. J. Organomet. Chem. 1974, 72, 157.
(14) Attempts to study the reaction in the presence of radical traps were thwarted
by decomposition reactions (see ref 8). Radical traps can also generate
false-positive results; see: (a) Albe´niz, A. C.; Espinet, P.; Lo´pez-Ferna´ndez,
R.; Sen, A. J. Am. Chem. Soc. 2002, 124, 11278.
-
(15) Photochemical and electrochemical studies of BPh4 have showed a two-
-
electron oxidation of BPh4 to form borenium cations is feasible: (a)
Williams, J. L. R.; Doty, J. C.; Grisdale, P. J.; Searle, R.; Regan, T. H.;
Happ, G. P.; Maier, D. P. J. Am. Chem. Soc. 1967, 89, 5153. (b) Crawford,
C. L.; Barnes, M. J.; Peterson, R. A.; Wilmarth, W. R.; Hyder, M. L. J.
Organomet. Chem. 1999, 581, 194. (c) Pal, P. K.; Chowdhury, S.; Drew,
M. G. B.; Datta, D. New J. Chem. 2002, 26, 367.
(16) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Chem. Commun. 2005, 4681.
(17) Reaction of an iron bromo-boryl complex with NaBPh4 has been shown to
generate BPh3 and Ph-: Coombs, D. L.; Aldridge, S.; Rossin, A.; Jones,
C.; Willock, D. J. Organometallics 2004, 23, 2911.
(18) For a migratory insertion of B(C6F5)2 boryl into a C-H bond giving
RB(H)(C6F5)2, see: Aldridge, S.; Kays (ne´e Coombs), D. L.; Al-Fawaz,
A.; Jones, K. M.; Horton, P. N.; Hursthouse, M. B.; Harrington, R. W.;
Clegg, W. Chem. Commun. 2006, 2578.
The formation of 6 is remarkable and is, as far as we are aware,
-
the first example of double dearylation of BPh4 in a molecular
context.15 The reason why the use of BPh4 as a counteranion is
-
avoided in homogeneous catalysis is open to debate. It is usually
-
assumed that BPh4 can block incoming substrates by weak
coordination.19 The BPh4 anion can also become metalated.20
-
(19) (a) Metz, M. V.; Schwartz, D. J.; Stern, C. L.; Marks, T. J. Organometallics
2002, 21, 4159. (b) Gladysz, J. A. Chem. ReV. 2000, 100 (4), 1167
(Editorial).
-
Monodearylation of BPh4 (eq 3) has been recognized as another
16
-
potentially detrimental role for BPh4
.
The double dearylation
(20) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989,
-
111, 2728.
reactivity of BPh4 described here adds to the growing list of
possible reactions that should be contemplated when using BPh4
-
.
JA904459Q
9
J. AM. CHEM. SOC. VOL. 131, NO. 30, 2009 10389