10.1002/anie.202014340
Angewandte Chemie International Edition
COMMUNICATION
[1]
(a) K. Muller, C. Faeh, F. Diederich, Science 2007, 317, 1881-1886; (b)
T. Fujiwara, D. O'Hagan, J. Fluorine Chem. 2014, 167, 16-29; (c) Y. Zhou,
J. Wang, Z. N. Gu, S. N. Wang, W. Zhu, J. L. Acena, V. A. Soloshonok,
K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422-518; (d) H. B. Mei, J. L.
Han, S. Fustero, M. Medio-Simon, D. M. Sedgwick, C. Santi, R.
Ruzziconi, V. A. Soloshonok, Chem. Eur. J. 2019, 25, 11797-11819.
N. A. Meanwell, J. Med. Chem. 2018, 61, 5822-5880.
of competition studies were conducted. While (hetero)aryl
chlorides, bromides, and phenol derivatives such as tosylates
each independently proved to be viable electrophiles in this
chemistry (Figure 3), the competition results presented in Figure
4B establish the Cl > Br > OTs reactivity trend in sterically and
electronically similar substrates. In a complementary competition
employing the heteroatom-containing nucleophiles 2,2-
difluoroethylamine, furfurylamine, and 2-aminopyridine with 1-
chloronaphthalene, preferential formation of the pyridine-derived
aniline product (B) over both the alkylamine (A) and the -
fluoroalkylamine (1d) derivatives was noted. The 1d:A ratio
(1.3:1) indicated a modest preference for the fluorinated versus
the non-fluorinated alkylamine nucleophile (Figure 4C), in
contrast to competition studies reported by Hu and co-workers
focusing on Cu-catalyzed C-N cross-coupling of an aryl bromide,
whereby the alkylamine was preferred (3.1:1) over the -
fluoroalkylamine.[11] The competitive formation of 1d and A herein
also contrasts the results of studies focusing on the
AdBippyPhos/Pd system, in which p-toluidine and n-butylamine
nucleophiles were cross-coupled preferentially, with no
conversion of the contending pentafluoropropylamine.[10] While
many factors are likely to contribute to our observed selectivity,
the favorable nature of 2-aminopyridine as a nucleophile in C-N
cross-couplings employing (PAd2-DalPhos)Ni(o-tol)Cl was noted
in our previous studies.[17g]
[2]
[3]
J. O. Link, M. S. Rhee, W. C. Tse, J. Zheng, J. R. Somoza, W. Rowe, R.
Begley, A. Chiu, A. Mulato, D. Hansen, E. Singer, L. K. Tsai, R. A. Bam,
C. H. Chou, E. Canales, G. Brizgys, J. R. Zhang, J. Li, M. Graupe, P.
Morganelli, Q. Liu, Q. Wu, R. L. Halcomb, R. D. Saito, S. D. Schroeder,
S. E. Lazerwith, S. Bondy, D. Jin, M. Hung, N. Novikov, X. Liu, A. G.
Villasenor, C. E. Cannizzaro, E. Y. Hu, R. L. Anderson, T. C. Appleby, B.
Lu, J. Mwangi, A. Liclican, A. Niedziela-Majka, G. A. Papalia, M. H. Wong,
S. A. Leavitt, Y. Xu, D. Koditek, G. J. Stepan, H. Yu, N. Pagratis, S.
Clancy, S. Ahmadyar, T. Z. Cai, S. Sellers, S. A. Wolckenhauer, J. Ling,
C. Callebaut, N. Margot, R. R. Ram, Y. P. Liu, R. Hyland, G. I. Sinclair,
P. J. Ruane, G. E. Crofoot, C. K. McDonald, D. M. Brainard, L. Lad, S.
Swaminathan, W. I. Sundquist, R. Sakowicz, A. E. Chester, W. E. Lee,
E. S. Daar, S. R. Yant, T. Cihlar, Nature 2020, 584, 614-618.
S. A. Lawrence, Amines: Synthesis, Properties and Applications,
Cambridge University Press, Cambridge, 2006.
[4]
[5]
P. Francotte, E. Goffin, P. Fraikin, P. Lestage, J.-C. Van Heugen, F.
Gillotin, L. Danober, J.-Y. Thomas, P. Chiap, D.-H. Caignard, B. Pirotte,
P. de Tullio, J. Med. Chem. 2010, 53, 1700-1711.
[6]
[7]
R. Ormazabal-Toledo, R. Contreras, R. A. Tapia, P. R. Campodonico,
Org. Biomol. Chem. 2013, 11, 2302-2309.
(a) F. Monnier, M. Taillefer, Top. Organomet. Chem. 2013, 46, 173-204;
(b) S. Bhunia, G. G. Pawar, S. V. Kumar, Y. W. Jiang, D. W. Ma, Angew.
Chem. Int. Ed. 2017, 56, 16136-16179.
In
summary,
the
Ni-catalyzed
N-arylation
of
fluoroalkylamines is reported, spanning an unprecedented range
of coupling partners including (hetero)aryl halides (X = Cl, Br, I),
and for the first time by use of any catalyst system, phenol-derived
(hetero)aryl electrophiles. Use of air-stable (PAd2-DalPhos)Ni(o-
[8]
(a) J. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534-1544; (b) P. Ruiz-
Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649; (c) R.
Dorel, C. P. Grugel, A. M. Haydl, Angew. Chem. Int. Ed. 2019, 58, 17118-
17129.
tol)Cl as
a pre-catalyst in this chemistry allows for the
[9]
J. L. Henderson, S. L. Buchwald, Org. Lett. 2010, 12, 4442-4445.
implementation of mild reaction conditions (i.e., room temperature
or use of an organic amine base), so as to avoid both degradation
of the N-(-fluoroalkyl)aniline product and/or base-sensitive
substituents, as well as substrate/product racemization. Ongoing
work is focused on expanding our mechanistic understanding of
how the DalPhos ligand family engenders desirable reactivity in
this and related chemistry.[27]
[10] (a) A. T. Brusoe, J. F. Hartwig, J. Am. Chem. Soc. 2015, 137, 8460-8468.
(b) A. T. Brusoe, J. F. Hartwig, PCT Int. Appl. US (2016),
WO2016183101A1.
[11] S. Chen, H. Wang, W. Jiang, P. X. Rui, X. G. Hu, Org. Biomol. Chem.
2019, 17, 9799-9807.
[12] J. D. Hayler, D. K. Leahy, E. M. Simmons, Organometallics 2019, 38, 36-
46.
[13] For the Cu-catalyzed N-arylation of -fluoroalkylamines with arylboronic
acids, see: H. Wang, Y.-H. Tu, D.-Y. Liu, X.-G. Hu, Org. Biomol. Chem.
2018, 16, 6634-6637.
[14] For the Cu- or Ag-catalyzed N-trifluoroethylation of anilines and related
substrates with trifluorodiazoalkanes, see: (a) H. Q. Luo, G. J. Wu, Y.
Zhang, J. B. Wang, Angew. Chem. Int. Ed. 2015, 54, 14503-14507; (b)
S. Hyde, J. Veliks, B. Liegault, D. Grassi, M. Taillefer, V. Gouverneur,
Angew. Chem. Int. Ed. 2016, 55, 3785-3789.
Acknowledgements
We are grateful to the NSERC of Canada (Discovery Grant
RGPIN-2019-04288 and Engage Grant NSERC EGP 542827-19
for M.S.; CGS-D Scholarship for R. T. M.), Paraza Pharma Inc.
(in particular Claudio Sturino and Arshad Siddiqui), the Province
of Nova Scotia (Graduate Scholarship for R. T. M.), and Dalhousie
University for their support of this work. We thank Prof. Alex
Speed, Mr. Xiao Feng, and Ms. Erin Welsh (Dalhousie) for
technical assistance in obtaining HPLC data, as well as Dr.
Michael Lumsden and Mr. Xiao Feng (Dalhousie) for technical
assistance in the acquisition of NMR and MS data.
[15] For mechanistically varied reports appearing since 2015, each featuring
isolated entries involving the formation of N-(-fluoroalkyl)anilines, see:
(a) E. B. Corcoran, M. T. Pirnot, S. S. Lin, S. D. Dreher, D. A. DiRocco,
I. W. Davies, S. L. Buchwald, D. W. C. MacMillan, Science 2016, 353,
279-283; (b) C. A. Malapit, M. Borrell, M. W. Milbauer, C. E. Brigham, M.
S. Sanford, J. Am. Chem. Soc. 2020, 142, 5918-5923; (c) S. U. Dighe, F.
Julia, A. Luridiana, J. J. Douglas, D. Leonori, Nature 2020, 584, 75-81.
[16] For a quantitative analysis regarding the commercial availability of
substituted aryl reagents, see: L. B. Huang, L. K. G. Ackerman, K. Kang,
A. M. Parsons, D. J. Weix, J. Am. Chem. Soc. 2019, 141, 10978-10983.
[17] (a) C. M. Lavoie, P. M. MacQueen, N. L. Rotta-Loria, R. S. Sawatzky, A.
Borzenko, A. J. Chisholm, B. K. V. Hargreaves, R. McDonald, M. J.
Ferguson, M. Stradiotto, Nat. Commun. 2016, 7, 11073; (b) C. M. Lavoie,
P. M. MacQueen, M. Stradiotto, Chem. Eur. J. 2016, 22, 18752-18755;
(c) C. M. Lavoie, R. McDonald, E. R. Johnson, M. Stradiotto, Adv. Synth.
Catal. 2017, 359, 2972-2980; (d) J. P. Tassone, P. M. MacQueen, C. M.
Keywords: amination • cross-coupling • fluoroalkylamine •
ligand design • nickel
This article is protected by copyright. All rights reserved.