F. Aloui, B. B. Hassine / Tetrahedron Letters 50 (2009) 4321–4323
4323
12. (a) Aloui, F.; El Abed, R.; Marinetti, A.; Ben Hassine, B. Tetrahedron Lett. 2008,
49, 4092–4095; (b) Aloui, F.; El Abed, R.; Ben Hassine, B. Tetrahedron Lett. 2008,
49, 1455–1457; (c) Aloui, F.; El Abed, R.; Marinetti, A.; Ben Hassine, B. C.R. Chim.
2009, 12, 284–290; (d) Aloui, F.; El Abed, R.; Marinetti, A.; Ben Hassine, B.
Tetrahedron Lett. 2007, 48, 2017–2020; (e) Aloui, F.; El Abed, R.; Guerfel, T.; Ben
Hassine, B. Synth. Commun. 2006, 11, 1557–1567.
packed with cellulose-tris(3,5-dimethylphenylcarbamate) and n-
heptane/2-propanol (80:20) mixture as the mobile phase.12a,d
Having established a short procedure for the synthesis of the
monophosphine 1, we then further proceeded to explore its coor-
dinating ability towards transition metals. To achieve this,
phosphine 1 was first allowed to react with 0.5 equiv of [(p-cyme-
ne)RuCl2]2 complex 6 in dichloromethane at room temperature to
13. El Abed, R.; Aloui, F.; Genêt, J.-P.; Ben Hassine, B.; Marinetti, A. J. Organomet.
Chem. 2007, 692, 1156–1160.
14. (a) El Abed, R.; Ben Hassine, B.; Genêt, G.-P.; Gorsane, M.; Marinetti, A. Eur. J.
}
Org. Chem. 2004, 1517–1522; (b) Herrmann, W. A.; Brossmer, C.; Ofele, K.;
afford the mononuclear ruthenium complex
7 in 61% yield
Reisinger, C. P.; Priermeir, T.; Beller, M.; Fisher, H. Angew. Chem., Int. Ed. Engl.
1995, 34, 1844–1848.
(Scheme 2). This compound was isolated as an orange-red, air sta-
ble solid and was characterised by NMR and mass spectrometry.17
15. Liu, L.; Yang, B.; Katz, T. J.; Poindexter, M. K. J. Org. Chem. 1991, 56, 3769–3775.
16. Spectral data for 3-bromohexahelicene 4: pale yellow solid, showing a violet
fluorescence when dissolved; Rf = 0.41 (cyclohexane/ethyl acetate, 98:2);
mp = 196–198 °C; 1H NMR (300 MHz, CDCl3): d (ppm): 6.72–6.79 (m, 2H),
7.27 (t, J = 6.9 Hz, 1H, H-14 or H-15), 7.46 (d, J = 9.3 Hz, 1H), 7.56 (d,
J = 8.4 Hz, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.93–8.03 (m,
8H); 13C NMR: (75 MHz, CDCl3): d (ppm): 119.43 (C), 123.87 (C), 125.05
(CH), 125.90 (CH), 126.19 (CH), 126.78 (CH), 126.95 (CH), 127.22 (CH),
127.32 (CH), 127.54 (CH), 127.60 (2CH), 127.67 (CH), 127.72 (CH), 127.81
(C), 127.82 (C), 128.12 (CH), 128.63 (C), 129.33 (CH), 129.60 (CH), 129.61
(C), 131.21 (C), 131.43 (C), 131.85 (C), 133.15 (C), 133.32 (C); MS (EI): m/
z = 407 [M+]; Anal. Calcd for C26H15Br: C, 76.67; H, 3.71. Found: C, 76.57;
H, 3.69.
Phosphine 1 was also reacted with the [PhCH2N(Me)2Pd(g3
–
OCOCF3)]2 complex 8 at room temperature for 15 min to produce
the mononuclear palladium complex 9 in 70% yield as an air stable,
pale yellow compound (Scheme 3).18
In conclusion, we have developed a straightforward method for
the preparation of helically chiral hexacyclic phosphine 1 starting
from readily available and inexpensive materials. We completed
the synthesis of the helical framework of 1 in three steps and in
29% overall yield. This class of compounds is known to possess
interesting catalytic activities, and we feel that this method when
combined with a simple resolution procedure will further facilitate
the exploration of this helical phosphine.
17. Spectral data for the Ru-complex 7: orange–red solid; mp = 195–197 °C; 1H NMR
(300 MHz, CDCl3): d (ppm): 0.99 (d, J = 7.2 Hz, 3H, Me), 1.03 (d, J = 7.2 Hz, 3H,
Me), 1.74 (s, 3H, Me), 2.77 (m, 1H, CHMe2), 4.68 (d, J = 6 Hz, 1H, CHp-cym), 4.80
(d, J = 6 Hz, 1H, CHp-cym), 5.00 (d, J = 5.8 Hz, 1H, CHp-cym), 5.12 (d, J = 5.7 Hz,
1H, CHp-cym), 6.68 (ddd, J1 = 8 Hz, J2 = 7.2 Hz, J3 = 1.2 Hz, 1H), 6.93 (td,
J1 = 9 Hz, J2 = 1.8 Hz, 1H, H-15), 7.10–7.35 (m, 8H), 7.49–7.63 (m, 5H), 7.80
(d, J = 8.1 Hz, 1H), 7.82–7.94 (m, 7H), 7.97 (d, J = 8.4 Hz, 1H), 8.36 (dd, J = 1.5 Hz,
JH–P = 11.7 Hz, 1H, H-4); 13C NMR (75 MHz, CDCl3): d (ppm): 18.47 (Me), 22.26
(Me), 22.38 (Me), 30.71 (CHp-cym), 87.53 (CHp-cym), 87.59 (CHp-cym), 88.19
(CHp-cym), 89.06 (CHp-cym), 96.45 (Cp-cym), 111.30 (Cp-cym), 124.42 (C),
124.92 (CH), 125.90 (CH), 126.86 (CH), 127.42 (CH), 127.62 (CH), 127.63 (CH),
127.77 (d, JC–P = 8.67 Hz, CH), 128.04 (CH), 128.08 (2CH), 128.19 (CH), 128.22
(CH), 128.25 (CH), 128.28 (CH), 128.31 (CH), 128.53 (CH), 128.56 (CH), 129.08
(d, JC–P = 8.17 Hz, CH), 130.36 (CH), 130.49 (CH), 131.09 (C), 131.11 (C), 131.24
(C), 131.59 (C), 131.87 (C), 132.41 (C), 132.49 (C), 133.25 (C), 133.43 (C), 133.61
(C), 133.87 (C), 134.05 (C), 134.63 (CH), 134.72 (2CH), 134.88 (CH), 135.33 (d,
JC–P = 11.70 Hz, CH); 31P NMR (121.5 MHz, CDCl3): d (ppm): 25.07 (s); ESI-MS:
m/z = 818.1 [M+]; HRMS (MALDI-TOF) calcd for C48H39Cl2PRu [M+]: 818.12099.
Found: 818.12023.
Acknowledgement
The authors are grateful to DGRSRT (Direction Générale de la
Recherche Scientifique et de la Rénovation Technologique) of the
Tunisian Ministry of Higher Education, Scientific Research and
Technology for the financial support.
References and notes
1. (a) Martin, R. H. Angew. Chem., Int. Ed. Engl. 1974, 13, 649–660; (b) Larrhoven,
W. H.; Prisen, W. J. C.. In Topics in Current Chemistry; Boschke, F. L., Ed.;
Springer: Berlin, 1984; Vol. 125, pp 65–127; (c) Grimme, S.; Harren, J.;
Sobenski, A.; Vögtle, F. Eur. J. Org. Chem. 1998, 1491–1509.
2. (a) Verbist, T.; Sioncke, S.; Persoons, A.; Vyklicky, L.; Katz, T. J. Angew. Chem., Int.
Ed. 2002, 41, 3882–3884; (b) Nuckolls, C.; Katz, T. J.; Katz, G.; Collings, P. J.;
Castellanos, L. J. Am. Chem. Soc. 1999, 121, 79–88.
3. (a) Fox, J. M.; Lin, D. J. Org. Chem. 1998, 63, 2031–2038; (b) Dai, Y.; Katz, T. J. J.
Org. Chem. 1997, 62, 1274–1285.
4. (a) Kelly, T. R.; Tellitu, I.; Pérez Sestelo, J. Angew. Chem., Int. Ed. 1997, 36, 1866–
1868; (b) Kelly, T. R.; Silva, R. A.; De Silva, H.; Jasmin, S.; Zhao, Y. J. Am. Chem.
Soc. 2000, 122, 6935–6949.
5. Dreher, S. D.; Katz, T. J.; Lam, K. C.; Rheingold, A. L. J. Org. Chem. 2000, 65, 815–
822.
6. Kawasaki, T.; Suzuki, K.; Licandro, E.; Bossi, A.; Maiorana, S.; Soai, K.
Tetrahedron: Asymmetry 2006, 17, 2050–2053.
7. Terfort, A.; Görls, H.; Brunner, H. Synthesis 1997, 79–86.
8. Reetz, M. T.; Beuttenmüller, E. W.; Goddart, R. Tetrahedron Lett. 1997, 38, 3211–
3214.
9. Reetz, M. T.; Sostmann, S. J. Organomet. Chem. 2000, 603, 105–109.
10. Paruch, K.; Vyklicky´, L.; Wang, D. Z.; Katz, T. J.; Incarvito, C.; Zakharov, L.;
Rheingold, A. L. J. Org. Chem. 2003, 68, 8539–8544.
18. Spectral data for the Pd-complex 9: pale yellow solid; mp = 208–210 °C; 1H
NMR (500 MHz, CDCl3): d (ppm): 2.78 (m, 6H, 2CH3), 4.00 (d, J = 13.5 Hz,
1H), 4.14 (d, J = 13.5 Hz, 1H), 6.41 (m, 2H), 6.79 (t, J = 7.5 Hz, 1H), 6.88 (t,
J = 7 Hz, 1H), 7.02 (d, J = 8.5 Hz, 1H), 7.06 (dd, J = 8.5 Hz, JH–P = 1.5 Hz, 1H),
7.28–7.52 (m, 8H), 7.61 (d,
J = 9 Hz, 1H), 7.87 (d, J = 8 Hz, 1H), 7.92–8.03 (m, 7H), 8.05 (d, J = 8 Hz, 1H),
8.59 (dd, J = 1.5 Hz, JH–P = 14 Hz, 1H, H-4); 13C NMR (75 MHz, CDCl3):
J = 8.5 Hz, 1H), 7.64–7.70 (m, 3H), 7.84 (d,
d
(ppm): 49.86 (Me), 49.98 (Me), 71.57 (CH2), 121.57 (CH), 122.63 (CH),
124.13 (C), 124.67 (CH), 125.19 (d, JC–P = 5.55 Hz, CH), 125.33 (CH), 125.50
(C), 126.21 (CH), 126.92 (CH), 127.13 (d, JC–P = 4.72 Hz, CH), 127.40 (C),
127.48 (CH), 127.62 (CH), 127.67 (C), 127.72 (d, JC–P = 3 Hz, CH), 127.97 (CH),
128.11 (CH), 128.19 (d, JC–P = 3 Hz, CH), 128.35 (CH), 129.59 (d, JC–P = 9 Hz,
CH), 129.80 (CH), 129.92 (CH), 130.18 (CH), 130.40 (d, JC–P = 2.32 Hz, CH),
130.62 (d, JC–P = 2.30 Hz, CH), 130.68 (C), 130.82 (d, JC–P = 1.87 Hz, C), 130.99
(C), 131.32 (CH), 131.41 (C), 131.46 (C), 131.91 (C), 132.19 (C), 133.19 (C),
134.30 (CH), 134.46 (CH), 134.63 (CH), 134.79 (CH), 137.66 (CH), 137.88
(CH), 137.96 (CH), 138.11 (CH), 141.54 (C), 143.63 (d, JC–P = 3.37 Hz, C),
148.36 (d, JC–P = 2.10 Hz, C); 31P NMR (121.5 MHz, CDCl3): d (ppm): 41.12
(s); 19F NMR (282 MHz, CDCl3): d (ppm): À74.75 (d, JF–P = 105.46 Hz); ESI-
MS: m/z = 866.1 [M+H]+; Anal. Calcd for C49H37NO2F3PPd: C, 67.94; H, 4.31;
N, 1.62. Found: C, 67.74; H, 4.29; N, 1.62.
´
´
11. Teply, F.; Stará, I. G.; Stary, I.; Kollárovic, A.; Šaman, D.; Vyskocil, Š.; Fiedler, P. J.
Org. Chem. 2003, 68, 5193–5197.