pubs.acs.org/joc
biologically active compounds.1 Traditionally, nitrones
A Metal-Free General Procedure for Oxidation of
Secondary Amines to Nitrones
have been synthesized by condensation of aldehydes with
N-monosubstituted hydroxylamines,1,2 or via oxidation of
the corresponding hydroxylamines,3 imines,4 and amines.5
These last two options are the most attractive methods
because of the greater availability of the required amines or
imines compared to the corresponding hydroxylamines.
Published methodologies concerning the oxidation of imines
to nitrones are scarce and present poor structural diversity
application,4a,4b with the exception of the work developed by
Goti’s group.4c The direct oxidation of amines to nitrones
has been achieved through different procedures, using
oxaziridines,5a dioxiranes,5b or hydroperoxides (including
H2O2) paired with diverse metal-catalytic systems.5c-n
Recently, we have reported a flexible synthetic approach
to several Stemona alkaloids illustrated with the preparation
of the putative structure of stemonidine.6 In this synthesis,
we required an efficient procedure for the preparation of an
enantiopure nitrone as 2 (Scheme 1).
ꢀ
ꢁ
ꢁ
ꢁ
Carolina Gella, Eric Ferrer, Ramon Alibes, Felıx Busque,*
Pedro de March, Marta Figueredo,* and Josep Font
ꢀ
Universitat Autonoma de Barcelona, Departament de
´
Quımica, 08193 Bellaterra, Spain
felix.busque@uab.es; marta.figueredo@uab.es
Received May 26, 2009
SCHEME 1
An efficient and metal-free protocol for direct oxidation of
secondary amines to nitrones has been developed, using
Oxone in a biphasic basic medium as the sole oxidant. The
method is general and tolerant with other functional groups
or existing stereogenic centers, providing rapid access to
enantiomerically pure compounds in good yields.
We had already published the preparation of this type of
substituted pyrroline N-oxides in enantiopure form by
oxidation of the corresponding amine7 or imine8 with
methyl(trifluoromethyl)dioxirane or dimethyldioxirane, re-
spectively. However, these procedures proved to be difficult
to scale up, essentially because of the problematic prepara-
tion of the mentioned dioxiranes in multigram quantities.
To avoid these difficulties, we envisaged the use of methyl-
(trifluoromethyl)dioxirane generated in situ from tri-
fluoroacetone using potassium hydrogen persulfate, com-
mercially available as Oxone,9 following a methodology
previously described for the epoxidation of several olefins.10
Despite Oxone having been extensively employed as oxidant
in organic synthesis,11 only a few reports have appeared deal-
ing with its use for the oxidation of amines. Thus, the synthesis
Nitrones and their derivatives are highly versatile building
blocks for the synthesis of a variety of natural products and
(1) (a) Tufariello, J. J. In 1,3-Dipolar Cycloaddition Chemistry; John Wiley
& Sons: New York, 1984; Vol. 2, Chapter 9. (b) Torssell, K. B. G. In Nitrile
Oxides, Nitrones and Nitronates in Organic Synthesis; VCH Verlagsge-
sellschaft: Weinheim, Germany, 1988. (c) Padwa, A.; Pearson, W. H. In Synthetic
Applications of 1,3-Dipolar Cycloadditions. Chemistry Toward Heterocycles
and Natural Products; John Wiley & Sons: Hoboken, NJ, 2003; Chapter 1.
(2) Robl, J. A.; Jih, R. H. J. Org. Chem. 1985, 50, 5913–5916.
(3) (a) Murahashi, S.-I.; Mitsui, H.; Watanabe, T.; Zenki, S. I. Tetra-
hedron Lett. 1983, 24, 1049–1052. (b) Goti, A.; De Sarlo, F.; Romani, M.
Tetrahedron Lett. 1994, 35, 6571–6574. (c) Ali, Sk. A.; Hashmi, S. M. A.;
Siddiqui, M. N.; Wazeer, M. I. M. Tetrahedron 1996, 52, 14917–14928. (d)
Cicchi, S.; Corsi, M.; Goti, A. J. Org. Chem. 1999, 64, 7243–7245. (e) Cicchi,
S.; Cardona, F.; Brandi, A.; Corsi, M.; Goti, A. Tetrahedron Lett. 1999, 40,
1989–1992. (f) Cicchi, S.; Marradi, M.; Goti, A.; Brandi, A. Tetrahedron Lett.
2001, 42, 6503–6505. (g) Saladino, R.; Neri, V.; Cardona, F.; Goti, A. Adv.
Synth. Catal. 2004, 346, 639–647.
(4) (a) Christensen, D.; Jorgensen, K. J. Org. Chem. 1989, 54, 126–131. (b)
e
ꢁ
ꢁ
ꢁ
Hanquet, G.; Lusinchi, X. Tetrahedron 1994, 50, 12185–12200. (c) Soldaini,
G.; Cardona, F.; Goti, A. Org. Lett. 2007, 9, 473–476. (d) Cardona, F.;
Bonanni, M.; Soldaini, G.; Goti, A. ChemSusChem. 2008, 1, 327–332.
(5) (a) Zajac, W. W.; Walters, T. R.; Darcy, M. G. J. Org. Chem. 1988, 53,
5856–5860. (b) Murray, R. W.; Singh, M. J. Org. Chem. 1990, 55, 2954–2957.
(c) Murahashi, S.-I.; Shiota, T. Tetrahedron Lett. 1987, 28, 2383–2386. (d)
Murahashi, S.-I.; Mitsui, H.; Shiota, T.; Tsuda, T.; Watanabe, S. J. Org. Chem.
1990, 55, 1736–1744. (e) Ballistreri, F. P.; Chiacchio, U.; Rescifina, A.;
Tomaselli, G. A.; Toscano, R. M. Tetrahedron 1992, 48, 8677–8684. (f)
Murahashi, S.-I.; Imada, Y.; Ohtake, H. J. Org. Chem. 1994, 59, 6170–6172.
(g) Marcantoni, E.; Petrini, M.; Polimanti, O. TetrahedronLett. 1995, 36, 3561–
3562. (h) Murray, R. W.; Iyanar, K.; Chen, J.; Wearing, J. T. J. Org. Chem.
1996, 61, 8099–8102. (i) Goti, A.; Nannelli, L. TetrahedronLett. 1996, 37, 6025–
6028. (j) Murahashi, S.-I.; Ohtake, H.; Imada, Y. Tetrahedron Lett. 1998, 39,
2765–2766. (k) Forcato, M.; Nugent, W. A.; Licini, G. Tetrahedron Lett. 2003,
44, 49–52. (l) Choudary, B. M.; Reddy, Ch. V.; Prakash, B. V.; Bharathi, B.;
Kantam, M. L. J. Mol. Catal. A: Chem. 2004, 217, 81–85. (m) Colladon, M.;
Scarso, A.; Strukul, G. Green Chem. 2008, 10, 793–798. (n) Zonta, C.; Cazzola,
E.; Mba, M.; Licini, G. Adv. Synth. Catal. 2008, 350, 2503–2506.
(6) Sanchez-Izquierdo, F.; Blanco, P.; Busque, F.; Alibes, R.; de March,
P.; Figueredo, M.; Font, J.; Parella, T. Org. Lett. 2007, 9, 1769–1772.
(7) Closa, M.; de March, P.; Figueredo, M.; Font, J. Tetrahedron:
Asymmetry 1997, 8, 1031–1037.
ꢁ
(8) Busque, F.; de March, P.; Figueredo, M.; Font, J.; Gallagher, T.;
ꢁ
Milan, S. Tetrahedron: Asymmetry 2002, 13, 437–445.
(9) Oxone is a product consisting of a 2:1:1 mixture of the active
ingredient KOSO2OOH, along with KHSO4 and K2SO4, respectively.
(10) (a) Evarts, J. B. Jr.; Fuchs, P. L. Tetrahedron Lett. 2001, 42, 3673–
3675. (b) Wei, L.; Fuchs, P. L. Org. Lett. 2003, 5, 2853–2856.
(11) Burke, S. D.; Danheiser, R. L. In Handbook of Reagents for Organic
Synthesis: Oxidizing and Reducing Agents; John Wiley & Sons: Chichester,
UK, 1999.
(12) (a)Kennedy, R.-J.; Stock, A.-M. J. Org. Chem. 1960, 25, 1901–1906. (b)
€
Priewisch, B.; Ruck-Braun, K. J. Org. Chem. 2005, 70, 2350–2352. (c) Crandall,
J. K.; Reix, T. J. Org. Chem. 1992, 57, 6759–6764. (d) Kettani, A. E.-C.;
Bernadou, J.; Meunier, B. J. Org. Chem. 1989, 54, 3213–3215. (e) Fields, J. D.;
Kropp, P. J. J.Org. Chem. 2000, 65, 5937–5941. (f) Aggarwal, V. K.;Lopin, Ch.;
Sandrinelli, F. J. Am. Chem. Soc. 2003, 125, 7596–7601.
DOI: 10.1021/jo901108u
r
Published on Web 07/16/2009
J. Org. Chem. 2009, 74, 6365–6367 6365
2009 American Chemical Society