pubs.acs.org/joc
o-lithiated depending upon the aziridine ring substitution,
Lithiation of N-Alkyl-(o-tolyl)aziridine:
Stereoselective Synthesis of Isochromans§
solvent, and temperature.2,3 Specifically, the previously de-
scribed directing-metalation ability of the aziridine group,
combined with its bias to give nucleophilic ring-opening, has
been successfully exploited for the preparation of phthalans.4,5
Six-membered-ring oxygen-bearing aromatic heterocycles
with isochroman and related skeletons occur in nature and
among bioactive compounds of interest, including drugs
(medicines, agrochemicals, etc.) and drug candidates.6
D1 dopaminergic agonists with 1,3-disubstituted isochro-
man skeletons are among the few D1 agonists known to
date. The synthesis of 1,3-disubstituted isochromans with an
aminomethyl substituent typically requires multistep oxa-
Pictet-Spengler cyclizations.7
Mariangela Dammacco,† Leonardo Degennaro,†
Saverio Florio,*,† Renzo Luisi,*,† Biagia Musio,† and
Angela Altomare‡
†Dipartimento Farmaco-Chimico, Universitaꢀ di Bari,
Consorzio Interuniversitario Nazionale Metodologie e
Processi Innovativi di Sintesi C.I.N.M.P.I.S., Via E. Orabona
4, I-70125-Bari, Italy, and ‡Istituto di Cristallografia
(IC-CNR), Via Amendola 122/o, I-70125 Bari, Italy
florio@farmchim.uniba.it; luisi@farmchim.uniba.it
Received June 8, 2009
In exploiting the lithiation-trapping sequence of arylaziri-
dines, we thought that 1-aminomethyl-3-alkyl(or aryl)-substi-
tuted isochromans could be prepared simply by lateral-
lithiation of o-tolyl-substituted N-alkyl-arylaziridines, trapping
with carbonyl compounds, and finally cyclization (Scheme 1).8
The reaction of 1-methyl-2-(o-tolyl)aziridine 1 with s-BuLi
in THF at -78 °C in the presence of TMEDA gave exclu-
sively the thermodynamically favored9,10 lithiated intermedi-
ate 1-Li as proved by trapping with D2O to furnish
deuterated derivative 2a (>98% D) (Table 1). Additionally,
lithiated intermediate 1-Li reacted with other electrophiles
(Table 1) to give ortho-functionalized aziridines 2b-j.
(3) Luisi, R.; Capriati, V.; Florio, S.; Musio, B. Org. Lett. 2007, 8, 1263–
1266.
(4) Capriati, V.; Florio, S.; Luisi, R.; Musio, B. Org. Lett. 2005, 7, 3749–
3752.
(5) (a) Snieckus, V. Chem. Rev. 1990, 879–933. (b) Gschwend, H. W.;
Rodriguez, H. R. Org. React. 1979, 26, 1. (c) Kizirian, J.-C. Chem. Rev. 2008,
108, 140–205.
(6) (a) Hsu, F. L.; Chen, J. Y. Phytochemistry 1993, 34, 1625–1627. (b)
Ralph, J.; Peng, J.; Lu, F. Tetrahedron Lett. 1998, 39, 4963–4964. (c)
Kashiwaba, N.; Morooka, S.; Kimura, M.; Ono, M.; Toda, J.; Suzuki, H.;
Sano, T. Nat. Prod. Lett. 1997, 9, 177–180.
The lithiation reaction of o-tolylaziridine 1 has been
investigated by using the aziridine ring capability to act
as a directing metalation group. Trapped with electro-
philes, the resulting o-aziridinyl benzyllithium 1-Li gives
access to several functionalized aziridines 2a-j. The
hydroxyalkylated derivatives 2d-j were converted into
important scaffolds such as isochromans 3a-d. A stereo-
selective preparation of isochromans (R)-3b, (1R,3S)-3d,
and (1R,3R)-3d has been developed starting from enan-
tioenriched o-tolylaziridine.
(7) (a) Michaelidis, M. R.; Schoenleber, R.; Thomas, S.; Yamamoto, D.
M.; Britton, D. R.; MacKenzie, R.; Kebabian, J. W. J. Med. Chem. 1991, 34,
2946–2953. (b) Hunteralt, B.; Heppert, U. D. Pharmazie 2001, 56, 445–447.
(c) Hunteralt, B.; Heppert, U. D. Pharmazie 2002, 57, 346–347.
(8) Some recent examples on lateral lithiation: (a) Aliyenne, A. O.;
Kraiem, J.; Kacem, Y.; Hassine, B. B. Tetrahedron Lett. 2008, 49, 1473–
1475. (b) Wilkinson, J. A.; Raiber, E. A.; Ducki, S. Tetrahedron 2008, 64,
6329–6333. (c) Clayden, J.; Turner, H.; Helliwell, M.; Moir, E. J. Org. Chem.
2008, 73, 4415–4423. (d) Hogan, A.-M. L.; Tricotet, T.; Meek, A.; Khokhar,
S. S.; O’Shea, D. J. Org. Chem. 2008, 73, 6041–6044. (e) Uchida, K.; Fukuda,
T.; Iwao, M. Tetrahedron 2007, 63, 7178–7186. (f) Sae-Lao, P.; Kittakoop, P.;
Rajivroongit, S. Tetrahedron Lett. 2006, 47, 345–348. (g) Burkhart, D. J.;
Zhou, P.; Blumenfeld, A.; Twamley, B.; Natale, N. R. Tetrahedron 2001, 57,
8039–8046. (h) Kowalczyk, B. A. Synthesis 2000, 1113–1116. (i) Wang, C.-C.;
Li, J. J.; Huang, H.-C.; Lee, L. F.; Reitz, D. B. J. Org. Chem. 2000, 65, 2711–
2715.
(9) It is likely that the nitrogen-induced stabilization in the six-membered
cyclic lithiated intermediated 1-Li, and Complex Induced Proximity Effect
could act sinergically making the lateral benzylic position the kinetically and
thermodynamically favored one, see: (a) Clayden J., In Organolithiums:
Selectivity for Synthesis; Pergamon: Oxford, UK, 2002; Chapter 2.
(b) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem., Int.
Ed. 2004, 43, 2206–2225.
Synthesizing substituted aziridines and their derivatives by
using the lithiation/electrophile trapping sequence is a useful
synthetic methodology.1 Within this context, we have recently
reported that N-alkylarylaziridines are smoothly R- and/or
§ Dedicated to Professor Peter Stanetty of the Vienna University of Technology
for his 65th birthday.
(1) (a) Aziridines and Epoxides in Organic Synthesis; Yudin, A. K., Ed.;
Wiley-VCH: Weinheim, Germany, 2006. (b) Padwa, A. In Comprehensive
Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F.
V., Taylor, R. J. K., Eds.; Elsevier: Oxford, UK, 2008; Vol. 1, pp 1-104. (c) Singh,
G. S.; D'hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107, 2080–2135. (d) Hu, X.
E. Tetrahedron 2004, 60, 2701–2743. (e) McCoull, W.; Davis, F. A. Synthesis
2000, 1347–1365.
(2) (a) Affortunato, F.; Florio, S.; Luisi, R.; Musio, B. J. Org. Chem.
2008, 73, 9214–9220. (b) Luisi, R.; Capriati, V.; Florio, S.; Di Cunto, P.;
Musio, B. Tetrahedron 2005, 61, 3251–3260.
(10) For other examples of nitrogen-assisted lithiation see: (a) Ross
Kelly, T.; Lebedev, R. L. J. Org. Chem. 2002, 67, 2197–2205. (b) Itami, K.;
Kamei, T.; Mitsudo, K.; Nokami, T.; Yoshida, J.-i. J. Org. Chem. 2001, 66,
3970–3976. (c) Flippin, L. A.; Muchowski, J. M.; Carter, D. S. J. Org. Chem.
1993, 58, 2463–2467. (d) Tarnchompoo, B.; Thebtaranonth, C.; Thebt-
aranonth, Y. Tetrahedron Lett. 1990, 31, 5779–5780. (e) Ludt, R. E.;
Crowther, G. P.; Hauser, C. R. J. Org. Chem. 1970, 35, 1288–1296. (f) Jones,
F. N.; Zinn, M. F.; Hauser, C. R. J. Org. Chem. 1963, 28, 663–665.
DOI: 10.1021/jo9011943
r
Published on Web 07/17/2009
J. Org. Chem. 2009, 74, 6319–6322 6319
2009 American Chemical Society