A. Kamal et al. / Tetrahedron: Asymmetry 20 (2009) 1267–1271
1271
(neat): 2960, 1692, 1517, 816 cmꢀ1
;
1H NMR (300 MHz, CDCl3): d
for C15H22O: C, 82.52; H, 10.16. Found: C, 82.55; H, 9.89. 0.32 g of
unreacted acetate (7S,9S)-9 was recovered. Yield: 55%; 62% de
[determined by the HPLC analysis using Chiralcel OB-H column
(n-hexane:2-propanol = 99:1) with 0.25 mL/min flow rate (tma-
1.24 (3H, d, J = 7.0 Hz), 1.87 (3H, s), 2.02 (3H, s), 2.32 (3H, s),
2.53–2.79 (2H, m), 3.21–3.36 (1H, m), 6.02 (1H, s), 7.02 (4H, s);
13C NMR (75 MHz, CDCl3): d 20.66, 20.92, 21.98, 27.51, 35.21,
52.70, 124.42, 126.74, 129.12, 135.48, 144.02, 155.62, 199.94;
EIMS (m/z): 216 (M+); Anal. Calcd for C15H20O: C, 83.29; H, 9.32.
Found: C, 83.21; H, 9.26.
jor = 21.22, tminor = 23.13 min); ½a D25
¼ ꢀ21:4 (c 1.0, CHCl3). The
ꢂ
spectroscopic data of the acetate were identical to that of 9.
4.14. (7S,9S)-epi-Bisacumol 4
4.11. (R)-Turmerone 2
To (7S,9S)-9 (0.2 g, 0.7 mmol) in methanol (20 mL), anhydrous
K2CO3 (0.3 g, 2.1 mmol) was added and stirred at room tempera-
ture for 2 h. Potassium carbonate was removed by filtration
through a Celite pad and the solvent evaporated under reduced
pressure. The residue was purified by column chromatography to
afford 0.15 g of (7S, 9S)-4 as colourless liquid. Yield: 92%,
Prepared from the diastereomeric mixture of (7R)-4 by the
same procedure described for (S)-2. Yield: 52%; ½a D25
¼ ꢀ67:8 (c
ꢂ
1.0, CHCl3), {Lit6a
½
a 2D0
ꢂ
¼ ꢀ58:0 (c 6.8, CHCl3)}.
4.12. (7S)-Bisacumol acetate 9
½
a 2D5
ꢂ
¼ þ4:1 (c 1.0, CHCl3), {lit11
½
a 2D0
ꢂ
¼ þ9:4 (c 9.7, CHCl3)}. IR
A solution of a diastereomeric mixture of alcohol (7S)-4 (0.50 g,
1.7 mmol) in CH2Cl2 (8 mL) was treated with triethylamine
(1.15 mL, 8.2 mmol) and acetic anhydride (0.51 mL, 5.5 mmol) at
0 °C in a catalytic amount of DMAP. The reaction mixture was stir-
red at room temperature for 3 h and quenched with the addition of
water followed by extraction with CH2Cl2. The organic layer was
washed with sodium bicarbonate solution, followed by a brine
solution and dried over anhydrous Na2SO4. The residue obtained
on removal of solvent under reduced pressure was purified by col-
umn chromatography to provide 0.65 g of pure acetate (7S)-9.
(neat): 3352, 2925, 1446, 1054 cmꢀ1
;
1H NMR (300 MHz, CDCl3):
d 1.25 (3H, d, J = 7.1 Hz), 1.57 (3H, s), 1.75 (3H, s), 1.75–1.86 (1H,
m), 1.89–1.98 (1H, m), 2.33 (3H, s), 2.69–2.91 (1H, m), 4.18–4.26
(1H, m), 5.14 (1H, d, J = 10.0 Hz), 7.05–7.12 (4H, s). The other spec-
troscopic data were identical to that of (7S, 9R)-4.
Acknowledgements
The authors (MSM, SA, SB and AAS) are thankful to CSIR, New
Delhi, for the award of research fellowship.
Yield: 92%; IR (neat): 2926, 1734, 1241, 816 cmꢀ1
;
1H NMR
(300 MHz, CDCl3): d 1.21 and 1.25 (3H, d, J = 7.5 Hz, diastereo-
meric), 1.55 and 1.60 (3H, s, diastereomeric), 1.68 and 1.72 (3H,
s, diastereomeric), 1.74–2.02 (2H, m), 1.92 and 1.99 (3H, s, diaste-
reomeric), 2.31 (3H, s), 2.57–2.77 (1H, m), 4.99–5.11 (1H, m), 5.24–
5.42 (1H, m), 7.02–7.12 (4H, m); EIMS (m/z): 260 (M+); Anal. Calcd
for C17H24O2: C, 78.42; H, 9.29. Found: C, 78.36; H, 9.24.
References
1. (a) Faber, K. Biotransformations in Organic Chemistry; Springer: Heidelberg,
2004; (b) Matsuda, T. Future Directions in Biocatalysis; Elsevier Science
Technology, 2007.
2. (a) Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Plavac, F.; White, C. T.. In The
Total Synthesis of Natural Products; ApSimon, J. W., Ed.; Wiley and Sons: New
York, 1981; Vol. 5, p 35; (b) Pirrung, M. C.; Morehead, A. T.. In The Total
Synthesis of Natural Products; Goldsmith, D., Ed.; Wiley and Sons: New York,
1997; Vol. 10, p 29.
4.13. Lipase-mediated hydrolysis: Synthesis of (7S,9R)-
3. (a) El Sayed, K. A.; Yousaf, M.; Hamann, M. T.; Avery, M. A.; Kelly, M.; Wipf, P. J.
Nat. Prod. 2002, 65, 1547; (b) Wright, A. E.; Pomponi, S. A.; McConnell, O. J.;
Kohmoto, S.; McCarthy, P. J. J. Nat. Prod. 1987, 50, 976; (c) Fusetani, N.; Sugano,
bisacumol 4
To a solution of acetate (7S)-9 (0.6 g, 2.3 mmol) in 5 mL of 0.1 M
phosphate buffer, pH 7.0, was added 0.2 g of lipase PS-C. The reac-
tion was performed at 35 °C with magnetic stirring. The pH of the
reaction mixture was adjusted to 7.0 by the concomitant addition
of 0.05 M NaOH solution with a pH meter. The progress of the reac-
tion was monitored by HPLC and after approximately 40% conver-
sion, the reaction mixture was filtered and extracted with ethyl
acetate. The organic layer was washed with brine, dried over anhy-
drous Na2SO4, evaporated under reduced pressure and the residue
obtained was purified by column chromatography. The enantio-
pure products were analyzed by HPLC and compared with the cor-
responding racemic products. Then, 0.24 g of naturally occurring
bisacumol (7S, 9R)-4 was obtained as a colourless liquid. Yield:
40%; 94% de [determined by the HPLC analysis using Chiralcel
AD-H column (n-hexane: 2-propanol = 90:10) with 0.5 mL/min
´
M.; Matsunaga, S.; Hashimoto, K. Experientia 1987, 43, 1234; (d) Rodrıguez, A.
D.; Vera, B. J. Org. Chem. 2001, 66, 6364; (e) Armas, H. T.; Mootoo, B. S.;
Reynolds, W. F. J. Nat. Prod. 2000, 63, 1593; (f) Freyer, A. J.; Patil, A. D.; Killmer,
L.; Zuber, G.; Myers, C.; Johnson, R. K. J. Nat. Prod. 1997, 60, 309; (g) McEnroe, F.;
Fenical, W. Tetrahedron 1978, 34, 1661.
4. (a) Ji, M.; Choi, J.; Lee, J.; Lee, Y. Int. J. Mol. Med. 2004, 14, 253; (b) Hong, C. H.;
Noh, M. S.; Lee, W. Y.; Lee, S. K. Planta Med. 2002, 68, 545; (c) Lee, S. K.; Hong, C.
H.; Huh, S.; Kin, S.; Oh, J.; Min, H.; Hwang, J. J. Environ. Pathol. Toxicol. Oncol.
2002, 21, 124; (d) Ferriera, L. A.; Henriques, O. B.; Andreoni, A. A.; Vital, G. R.;
Campos, M. M.; Habermehl, G. G.; Moraes, V. L. Toxicon 1992, 30, 1211.
5. Lee, H. S. Bioresour. Technol. 2006, 97, 1372.
6. (a) Zhang, A.; RajanBabu, T. V. Org. Lett. 2004, 6, 3159; (b) Mori, K. Molecules
2005, 10, 1023.
7. Mori, K. Tetrahedron: Asymmetry 2005, 16, 685.
8. (a) Uehara, S. I.; Yasuda, I.; Takeya, K.; Itokawa, H. Chem. Pharm. Bull. 1989, 37,
237; (b) Matsuda, H.; Morikawa, T.; Nmomiya, K.; Yoshikawa, M. Bioorg. Med.
Chem. 2001, 9, 909; (c) Matsuda, H.; Morikawa, T.; Ninomiya, K.; Yoshikawa, M.
Tetrahedron 2001, 57, 8443.
9. Fukuda, M.; Ohkoshi, E.; Makino, M.; Fujimoto, Y. Chem. Pharm. Bull. 2006, 54,
1465.
10. (a) Meyers, A. I.; Smith, R. K. Tetrahedron Lett. 1979, 30, 2749; (b) Rowe, B. J.;
Spilling, C. D. J. Org. Chem. 2003, 68, 9502; (c) Fuganti, C.; Serra, S.; Dulio, A. J.
Chem. Soc., Perkin Trans. 1 1999, 279.
11. Li, A.; Yue, G.; Li, Y.; Pan, X.; Yang, T. K. Tetrahedron: Asymmetry 2003, 14, 75.
12. (a) Kamal, A.; Malik, M. S.; Shaik, A. A.; Azeeza, S.; J. Mol. Catal. B: Enzym. 2009,
58, 132; (b) Kamal, A.; Malik, M. S.; Shaik, A. A.; Azeeza, S. Tetrahedron:
Asymmetry 2008, 19, 1078; (c) Kamal, A.; Malik, M. S.; Shaik, A. A.; Azeeza, S.
Tetrahedron: Asymmetry 2007, 18, 2547; (d) Kamal, A.; Azhar, M. A.; Krishnaji,
T.; Malik, M. S.; Azeeza, S. Coord. Chem. Rev. 2008, 252, 569.
flow rate (tmajor = 9.89, tminor = 10.79 min); ½a D25
¼ þ14:8 (c 1.0,
ꢂ
CHCl3), {lit11
½
a 2D0
ꢂ
¼ þ15:6 (c 8.4, CHCl3)}; IR (neat): 3353, 2925,
1447, 1054 cmꢀ1
;
1H NMR (300 MHz, CDCl3): d 1.24 (3H, d,
J = 7.1 Hz), 1.55 (3H, s), 1.73 (3H, s), 1.75–1.86 (1H, m), 1.89–1.98
(1H, m), 2.31 (3H, s), 2.67–2.92 (1H, m), 4.14–4.25 (1H, m), 5.15
(1H, d, J = 10.2 Hz), 7.05–7.13 (4H, s); 13C NMR (75 MHz, CDCl3):
d 18.20, 20.92, 22.91, 25.62, 35.62, 45.89, 66.85, 126.86, 128.06,
128.99, 133.82, 135.35, 143.98; EIMS (m/z): 218 (M+); Anal. Calcd