Watson and Gillies
JOCArticle
facilitate membrane penetration and disruption via toroidal
pore,10 carpet,11 or barrel stave mechanisms,12 leading to the
leakage of the cell contents and ultimately resulting in
bacterial cell death. This mode of action is of particular
interest for the development of new therapeutics as it is
thought to be relatively nonspecific and thus not very con-
ducive to the development of resistance.13
Despite the significant progress in the development of
synthetic membrane-disruptive oligomers, the mechanism
of action and structure-property relationships are still not
fully understood, and new antibiotics are still badly needed.
In addition, there has been very little work thus far on
peptide-based oligomers that assume amphipathic linear or
β-strand-like conformations. Prior successes using the linear
aromatic oligomers25-27 as well as an example of a highly
active R-peptide capable of adopting an amphipathic β-sheet
structure33 suggest that such a design would be successful.
Although synthetic analogues of protegrins have been devel-
oped to mimic their rigid antiparallel two-stranded β-sheet
structure which is stabilized by disulfide bonds, these struc-
tures have focused on the incorporation of the new turn
inducing elements, and like the protegrins, they contain
segregated domains of cationic groups at each end of the
β-sheet.34,35 Reported here is the first example of an amino
acid based β-strand peptidomimetic that is designed to have
an amphipathic structure in which cationic amino acid
side chains are directed to one face of the strand and
hydrophobic groups are directed toward the opposite face,
with the aim of developing a new scaffold for membrane-
disruptive antibiotics.
Several synthetic oligomers designed to mimic an elon-
gated β-strand conformation have been developed, although
a limited number of these allow for the incorporation of the
functional side chains required to access the target amphi-
pathic structures.36-39 For the current work, oligomers
based on alternating R-amino acids and azacyclohexenone
(Ach) units (Figure 1a), developed and termed @-tides by
Bartlett and co-workers, were selected as the backbone.39
The replacement of alternating amino acids with the Ach
units provides conformational restriction which favors elon-
gated conformations and the tertiary amide limits hydrogen
bonding to one edge of the strand, preventing uncontrolled
aggregation. They also possess attractive features such as
resistance to proteolytic degradation40 and the easy incor-
poration of the Ach unit by a flexible, modified peptide
synthesis.39,41 Similar analogues have been demonstrated to
bind to the PDZ domains of proteins more strongly than
their natural β-sheet ligands.40 In the work described here,
new amphipathic @-tides were designed and synthesized,
and their abilities to potentially serve as membrane active
antibiotics were investigated by studying the release of
encapsulated fluorescent dye molecules from phospho-
lipid vesicle models of both bacterial and mammalian cell
Inspired by their structures and activities, there has been
significant interest in the development of new synthetic
mimics of the naturally occurring antimicrobial peptides.
These synthetic molecules are providing important insights
into the mechanism of action of membrane-disruptive pep-
tides14-16 while at the same time introducing simplified
sequences and resistance to proteolytic degradation,17
a
problem that plagues natural R-peptides as potential drug
candidates. Thus far, synthetic oligomers based on R- and
β-amino acids18-23 as well as peptoids24 that adopt helical
amphipathic structures in the presence of membranes have
been developed, providing good antibiotic activity and se-
lectivity. Aromatic oligomers based on amides25 and ureas,26
as well as oligo(phenylene ethynylene)s27 that exhibit ex-
tended conformations, have also been investigated, provid-
ing promising results. Recent work has also shown that
through careful balancing of their cationic charge and
hydrophobicity, amphiphilic polymers can provide desirable
activities.28-32
(10) Matsuzaki, K.; Murase, O.; Fujii, N.; Miyajima, K. Biochemistry
1996, 35, 11361–11368.
(11) Pouny, Y.; Papaport, D.; Mor, A.; Nicolas, P.; Shai, Y. Biochemistry
1992, 31, 12416–12423.
(12) Yang, L.; Harroun, T. A.; Weiss, T. M.; Ding, L.; Huang, H.
Biophys. J. 2001, 81, 1475–1485.
(13) Hancock, R. E. W. Lancet 1997, 349, 418–422.
(14) Chen, X.; Tang, H.; Even, M. A.; Wang, J.; Tew, G. N.; Chen, Z. J.
Am. Chem. Soc. 2006, 128, 2711–2714.
(15) Yang, L.; Gordon, V. D.; Mishra, A.; Som, A.; Purdy, K. R.; Davis,
M. A.; Tew, G. N.; Wong, G. C. L. J. Am. Chem. Soc. 2007, 129, 12141–
12147.
(16) Epand, R. F.; Umezawa, N.; Porter, E. A.; Gellman, S. H.; Epand, R.
M. Eur. J. Biochem. 2003, 270, 1240–1248.
(17) Frackenpohl, J.; Arvidsson, P. I.; Schreiber, J. V.; Seebach, D.
ChemBioChem 2001, 2, 445–455.
(18) Oren, Z.; Shai, Y. Biochemistry 2000, 39, 6103–6114.
(19) Porter, E. A.; Wang, X.; Lee, H. S.; Weisblum, B.; Gellman, S. H.
Nature 2000, 404, 565–565.
(20) Porter, E. A.; Weisblum, B.; Gellman, S. H. J. Am. Chem. Soc. 2002,
124, 7324–7330.
(21) Hamuro, Y.; Schneider, J. P.; DeGrado, W. F. J. Am. Chem. Soc.
1999, 121, 12200–12201.
(22) Liu, D.; DeGrado, W. F. J. Am. Chem. Soc. 2001, 123, 7553–7559.
(23) Arvidsson, P. I.; Ryder, N. S.; Weiss, H. M.; Gross, G.; Kretz, O.;
Woessner, R.; Seebach, D. ChemBioChem 2003, 4, 1345–1347.
(24) Patch, J. A.; Barron, A. E. J. Am. Chem. Soc. 2003, 125, 12092–
12093.
(25) Liu, D.; Choi, S.; Chen, B.; Doerksen, R. J.; Clements, D. J.;
Winkler, J. D.; Klein, M. L.; DeGrado, W. F. Angew. Chem., Int. Ed.
2004, 43, 1158–1162.
(33) Blazyk, J.; Wiegand, R.; Klein, J.; Hammer, J.; Epand, R. M.;
Epand, R. F.; Maloy, W. L.; Kari, U. P. J. Biol. Chem. 2001, 276, 27899–
27906.
(34) Lai, J. R.; Huck, B. R.; Weisblum, B.; Gellman, S. H. Biochemistry
2002, 41, 12835–12842.
(35) Srinivas, N.; Moehle, K.; Abou-Hadeed, K.; Obrecht, D.; Robinson,
J. A. Org. Biomol. Chem. 2007, 5, 3100–3105.
(36) Nowick, J. S.; Chung, D. M.; Maitra, K.; Maitra, S.; Stigers, K. D.;
Sun, Y. J. Am. Chem. Soc. 2000, 122, 7654–7661.
(37) Gong, B.; Yan, Y.; Zeng, H.; Skrxypczak-Jankunn, E.; Kim, Y. W.;
Zhu, J.; Ickes, H. J. Am. Chem. Soc. 1999, 121, 5607–5608.
(38) Smith, A. B.; Keenan, T. P.; Holcomb, R. C.; Sprengeler, P. A.;
Guzman, M. C.; Wood, J. L.; Carroll, P. J.; Hirschmann, R. J. Am. Chem.
Soc. 1992, 114, 10672–10674.
(26) Tang, H.; Doerksen, R. J.; Tew, G. N. Chem. Commun. 2005, 1537–
1539.
(27) Ishitsuka, Y.; Amt, L.; Majewski, J.; Frey, S.; Ratajczek, M.; Kjaer,
K.; Tew, G. N.; Lee, K. Y. C. J. Am. Chem. Soc. 2006, 128, 13123–13129.
€
(28) Ilker, M. F.; Nusslein, K.; Tew, G. N.; Coughlin, E. B. J. Am. Chem.
Soc. 2004, 126, 15870–15875.
(29) Lienkamp, K.; Madkour, A. E.; Musante, A.; Nelson, C. F.;
€
Nusslein, K.; Tew, G. N. J. Am. Chem. Soc. 2008, 130, 9836–9843.
(30) Kuroda, K.; DeGrado, W. F. J. Am. Chem. Soc. 2005, 127, 4128–
4129.
(31) Tew, G. N.; Lui, D.; Chen, B.; Doerksen, R. J.; Kaplan, J.; Carroll, P.
J.; Klein, M. L.; DeGrado, W. F. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
5110–5114.
(32) Mowery, B. P.; Lee, S. E.; Kissounko, D. A.; Epand, R. F.; Epand,
R. M.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. J. Am. Chem. Soc. 2007,
129, 15474–15476.
(39) Phillips, S. T.; Rezac, M.; Abel, U.; Kossenjans, M.; Bartlett, P. A. J.
Am. Chem. Soc. 2002, 124, 58–66.
(40) Hammond, M. C.; Harris, B. Z.; Lim, W. A.; Bartlett, P. A. Chem.
Biol. 2006, 13, 1247–1251.
(41) Phillips, S. T.; Piersanti, G.; Ruth, M.; Gubernator, N.; van
Lengerich, B.; Bartlett, P. A. Org. Lett. 2004, 6, 4483–4485.
5954 J. Org. Chem. Vol. 74, No. 16, 2009