LETTER
Short Syntheses of (S)-Nicotine and the Alkaloid 225C
1415
Finally, N-unprotected primary allylamines were subject- cyclic imines were formed. The insight gained allowed
ed to the hydroformylation reaction (Scheme 6). Under very short syntheses of (S)-nicotine and the alkaloid 225C
standard hydroformylation conditions [Xantphos, 60 bar, to be carried out.
H2/CO (1:1), CH2Cl2 or toluene, 80 °C, 24 h] conversion
was low. Under the conditions B optimized for nicotine
[Biphephos, 30 bar, H2/CO (5:1), CHCl3] the imines 10a
Acknowledgment
This work was supported by the Deutsche Forschungsgemeinschaft
(SFB 623) and the Fonds der Chemischen Industrie. We thank Prof.
Eilbracht, Dortmund, for useful hints concerning hydroformylation
procedures. Continued supply of chiral amines by Prof. Ditrich,
BASF SE, Ludwigshafen, is gratefully acknowledged.
and 10b were formed in good yield; reductive amination
did not occur (GC-MS).22
H2/CO 5:1 (30 bar)
Rh(acac)(CO)2 (0.9 mol%)
Biphephos (1.8 mol%)
NH2
N
HN
H2, Rh/C
R
CHCl3, 50 °C, 18–24 h
MeOH, r.t.
18–20 h
R
R
References and Notes
3
10
11
(1) (a) Helmchen, G. In Iridium Complexes in Organic
Synthesis; Oro, L. A.; Claver, C., Eds.; Wiley-VCH:
Weinheim, 2009, 211. (b)Helmchen, G.; Dahnz, A.; Dübon,
P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007,
675. (c) Takeuchi, R.; Kezuka, S. Synthesis 2006, 3349.
(d) Miyabe, H.; Takemoto, Y. Synlett 2005, 1641.
(2) (a) Streiff, S.; Welter, C.; Schelwies, M.; Lipowsky, G.;
Miller, N.; Helmchen, G. Chem. Commun. 2005, 2957.
(b) Welter, C.; Moreno, R. M.; Streiff, S.; Helmchen, G.
Org. Biomol. Chem. 2005, 3, 3266. (c) Böhrsch, V.;
Blechert, S. Chem. Commun. 2006, 1968.
3k, 10a, 11a
3l, 10b, 11b
R = Ph
R = n-Hept 69%
57% (98% ee)
73% (96% ee)
89%
Scheme 6 Hydroformylation–cyclization of primary allylamines
Hydrogenation of the imines 10 was carried out with
Rh/C as catalyst (methanol, r.t., 1 atm of H2). The enantio-
meric excess decreased slightly, from 98% (10a) to 96%
(11a, Scheme 6). In contrast, with Pd/C as catalyst under
otherwise identical conditions the ee decreased to 90%.
(3) Schelwies, M.; Dempwolff, A.; Rominger, F.; Helmchen, G.
Angew. Chem. Int. Ed. 2007, 46, 5598; Angew. Chem. 2007,
119, 5694.
The cyclic imines 10 are of interest for syntheses of bio-
logically active compounds. We have used ent-10b for a
short synthesis of the alkaloid 225C [(+)-12], a constituent
of the venom of the fire-ant Solenopsis fugax.23 Introduc-
tion of the n-Bu group by addition of n-BuLi was an obvi-
ous route (Scheme 7). The addition of a nucleophile to an
imine generally requires the presence of an electron-with-
drawing N-substituent24 or addition of a Lewis acid.25 Fol-
lowing a procedure by Nakagawa et al.,25b a solution of
ent-10b in toluene was cooled to –78 °C, treated with
BF3×OEt2 (1.6 equiv) and then with n-BuLi (2 equiv, 1.6
M in n-hexane). The addition proceeded with a low dr of
66:34 (trans/cis). However, with diethyl ether as solvent
at –100 °C using n-BuLi, which was precooled26 to the
same temperature, an excellent dr of 95:5 resulted.
(4) (a) Allylamines prepared by Ir-catalyzed asymmetric allylic
substitution have been used in hydroformylation–
indolization sequences: Bondzić, B. P.; Farwick, A.;
Liebich, J.; Eilbracht, P. Org. Biomol. Chem. 2008, 3723.
(b) For preparation of an indolizine via hydroformylation of
an N-allyl-pyrrole, see: Guazzelli, G.; Lazzaroni, R.;
Settambolo, R. Beilstein J. Org. Chem. 2008, 4, 2.
(5) For a review, see: (a) Eilbracht, P.; Schmidt, A. M. Top.
Organomet. Chem. 2006, 18, 65. (b) Eilbracht, P.;
Bärfacker, L.; Buss, C.; Hollmann, C.; Kitsos-Rzychon,
B. E.; Kranemann, C. L.; Roggenbruck, R.; Schmidt, A.
Chem. Rev. 1999, 99, 3329. (c) Ahmed, M.; Seayad, A. M.;
Jackstell, R.; Beller, M. J. Am. Chem. Soc. 2003, 125,
10311. (d) Ahmed, M.; Buch, C.; Routaboul, L.; Jackstell,
R.; Klein, H.; Spannenberg, A.; Beller, M. Chem. Eur. J.
2007, 13, 1594; and previous work cited there.
(6) (a) Vieira, T. O.; Alper, H. Chem. Commun. 2007, 2710.
(b) Wittmann, K.; Wisniewski, W.; Mynott, R.; Leitner, W.;
Kranemann, C. L.; Rische, T.; Eilbracht, P.; Sander, S.;
Ernsting, J. M. Chem. Eur. J. 2001, 7, 4584. (c)Eguchi, M.;
Tzamarioudaki, M.; Ojima, I. J. Org. Chem. 1995, 60, 7078.
(d) Vidal, E. S.; Ojima, I. J. Org. Chem. 1998, 63, 7999.
(e) Spangenberg, T.; Airiau, E.; Bui The Thuong, M.;
Donnard, M.; Billet, M.; Mann, A. Synlett 2008, 2859.
(f) Airiau, E.; Spangenberg, T.; Girard, N.; Schoenfelder, A.;
Salvadori, J.; Taddei, M.; Mann, A. Chem. Eur. J. 2008, 14,
10938. (g) Spangenberg, T.; Breit, B.; Mann, A. Org. Lett.
2009, 11, 261.
(7) For leading references to asymmetric syntheses of
pyrrolidines, including alkaloid 225C, see: Davis, F. A.; Xu,
H.; Wu, Y.; Zhang, J. Org. Lett. 2006, 8, 2273.
(8) Rhodium-Catalyzed Hydroformylation; van Leeuwen, P. W.
N. M.; Claver, C., Eds.; Kluwer Academic: Dordrecht, 2000.
(9) Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H.
Acc. Chem. Res. 2001, 34, 895.
n-BuLi (2.0 equiv)
BF3⋅OEt2 (1.6 equiv)
S
S
n-Hept
n-Bu
OEt2, –100 °C (2 h) to r.t.
N
N
n-Hept
H
(+)-12
dr = 95:5, 97% ee (72%)
ent-10b
Scheme 7 Application of a cyclic imine in the synthesis of an alka-
loid
In summary, we present short routes to chiral 2-substitut-
ed pyrrolidines27 based on rhodium-catalyzed hydro-
formylations of allylamines, which were derived from
asymmetric allylic substitutions. The outcome of the
hydroformylation reaction was found to be controlled by
the nature of the substituent at nitrogen, fortunately not by
the substituent at carbon. In the case of N-alkylallyl-
amines in situ reduction to the pyrrolidines occurred, with
N-acyl derivatives hemiaminals and with primary amines
(10) Cuny, G. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115,
2066.
Synlett 2009, No. 9, 1413–1416 © Thieme Stuttgart · New York